Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import pymongo
|
4 |
+
from sentence_transformers import SentenceTransformer
|
5 |
+
import numpy as np
|
6 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
7 |
+
import pickle
|
8 |
+
import os
|
9 |
+
from datetime import datetime
|
10 |
+
|
11 |
+
# MongoDB Connection
|
12 |
+
MONGO_URI = "mongodb://muhammadbinimran1001:[email protected]:27017,dsm-shard-00-01.inrzs.mongodb.net:27017,dsm-shard-00-02.inrzs.mongodb.net:27017/?ssl=true&replicaSet=atlas-nbg4er-shard-0&authSource=admin&retryWrites=true&w=majority"
|
13 |
+
client = pymongo.MongoClient(MONGO_URI)
|
14 |
+
db = client['test']
|
15 |
+
users_collection = db['users']
|
16 |
+
jobs_collection = db['jobs']
|
17 |
+
courses_collection = db['courses']
|
18 |
+
|
19 |
+
# Load Datasets
|
20 |
+
@st.cache_data
|
21 |
+
def load_data():
|
22 |
+
questions_df = pd.read_csv("Generated_Skill-Based_Questions.csv")
|
23 |
+
jobs_df = pd.read_csv("Updated_Job_Posting_Dataset.csv")
|
24 |
+
courses_df = pd.read_csv("coursera_course_dataset_v2_no_null.csv")
|
25 |
+
return questions_df, jobs_df, courses_df
|
26 |
+
|
27 |
+
questions_df, jobs_df, courses_df = load_data()
|
28 |
+
|
29 |
+
# Load or Initialize Model
|
30 |
+
@st.cache_resource
|
31 |
+
def load_model():
|
32 |
+
return SentenceTransformer('all-MiniLM-L6-v2')
|
33 |
+
|
34 |
+
model = load_model()
|
35 |
+
tfidf_vectorizer = TfidfVectorizer(stop_words='english')
|
36 |
+
|
37 |
+
# Skill Extraction and Question Generation
|
38 |
+
def get_user_skills(user_id):
|
39 |
+
user = users_collection.find_one({"_id": user_id})
|
40 |
+
return user.get("skills", []) if user else []
|
41 |
+
|
42 |
+
def get_questions_for_skills(skills):
|
43 |
+
questions = []
|
44 |
+
for skill in skills:
|
45 |
+
skill_questions = questions_df[questions_df['Skill'] == skill].sample(1)
|
46 |
+
if not skill_questions.empty:
|
47 |
+
questions.append(skill_questions.iloc[0])
|
48 |
+
return pd.DataFrame(questions) if questions else None
|
49 |
+
|
50 |
+
# Answer Evaluation
|
51 |
+
def evaluate_answer(user_answer, expected_answer):
|
52 |
+
user_embedding = model.encode([user_answer], convert_to_tensor=True)[0]
|
53 |
+
expected_embedding = model.encode([expected_answer], convert_to_tensor=True)[0]
|
54 |
+
score = util.pytorch_cos_sim(user_embedding, expected_embedding).item() * 100
|
55 |
+
return max(0, round(score, 2))
|
56 |
+
|
57 |
+
# Recommendation Logic
|
58 |
+
def recommend_courses(skills, user_level):
|
59 |
+
skill_indices = [questions_df.index[questions_df['Skill'] == skill].tolist()[0] for skill in skills if skill in questions_df['Skill'].values]
|
60 |
+
if not skill_indices:
|
61 |
+
return []
|
62 |
+
course_skills = courses_df['skills'].fillna("").tolist()
|
63 |
+
course_embeddings = model.encode(course_skills, convert_to_tensor=True)
|
64 |
+
skill_embeddings = model.encode(skills, convert_to_tensor=True)
|
65 |
+
similarities = util.pytorch_cos_sim(skill_embeddings, course_embeddings).cpu().numpy()
|
66 |
+
total_scores = 0.6 * np.max(similarities, axis=0)
|
67 |
+
idx = np.argsort(-total_scores)[:3]
|
68 |
+
return courses_df.iloc[idx][['course_title', 'Organization']].values.tolist()
|
69 |
+
|
70 |
+
def recommend_jobs(skills, user_level):
|
71 |
+
skill_indices = [questions_df.index[questions_df['Skill'] == skill].tolist()[0] for skill in skills if skill in questions_df['Skill'].values]
|
72 |
+
if not skill_indices:
|
73 |
+
return []
|
74 |
+
job_skills = jobs_df['required_skills'].fillna("").tolist()
|
75 |
+
job_embeddings = model.encode(job_skills, convert_to_tensor=True)
|
76 |
+
skill_embeddings = model.encode(skills, convert_to_tensor=True)
|
77 |
+
similarities = util.pytorch_cos_sim(skill_embeddings, job_embeddings).cpu().numpy()
|
78 |
+
total_scores = 0.5 * np.max(similarities, axis=0)
|
79 |
+
idx = np.argsort(-total_scores)[:3]
|
80 |
+
return jobs_df.iloc[idx][['job_title', 'company_name', 'location']].values.tolist()
|
81 |
+
|
82 |
+
# Streamlit App
|
83 |
+
st.title("Skill Assessment & Recommendation")
|
84 |
+
|
85 |
+
# Simulate User Signup (for demo, replace with actual auth)
|
86 |
+
if 'user_id' not in st.session_state:
|
87 |
+
st.session_state.user_id = "68233a6b7c0fd8f9d6994e" # Example user ID
|
88 |
+
st.session_state.skills = get_user_skills(st.session_state.user_id)
|
89 |
+
st.session_state.scores = {}
|
90 |
+
|
91 |
+
if not st.session_state.skills:
|
92 |
+
st.write("No skills found. Please update your profile with skills during signup.")
|
93 |
+
else:
|
94 |
+
st.write(f"Detected Skills: {st.session_state.skills}")
|
95 |
+
|
96 |
+
if 'questions' not in st.session_state:
|
97 |
+
st.session_state.questions = get_questions_for_skills(st.session_state.skills)
|
98 |
+
if st.session_state.questions is not None:
|
99 |
+
st.session_state.questions = st.session_state.questions.reset_index(drop=True)
|
100 |
+
|
101 |
+
if st.session_state.questions is not None and not st.session_state.questions.empty:
|
102 |
+
for idx, row in st.session_state.questions.iterrows():
|
103 |
+
st.subheader(f"Question for {row['Skill']}")
|
104 |
+
user_answer = st.text_area(f"Question: {row['Question']}", key=f"answer_{idx}")
|
105 |
+
if st.button(f"Submit Answer for {row['Skill']}", key=f"submit_{idx}"):
|
106 |
+
score = evaluate_answer(user_answer, row['Answer'])
|
107 |
+
st.session_state.scores[row['Skill']] = score
|
108 |
+
st.success(f"Score for {row['Skill']}: {score}%")
|
109 |
+
|
110 |
+
if all(skill in st.session_state.scores for skill in st.session_state.skills):
|
111 |
+
st.write("Assessment Complete!")
|
112 |
+
mean_score = np.mean(list(st.session_state.scores.values()))
|
113 |
+
weak_skills = [s for s, score in st.session_state.scores.items() if score < 60]
|
114 |
+
st.write(f"Mean Score: {mean_score:.2f}%")
|
115 |
+
st.write(f"Weak Skills: {weak_skills}")
|
116 |
+
|
117 |
+
courses = recommend_courses(weak_skills or st.session_state.skills, "Intermediate")
|
118 |
+
jobs = recommend_jobs(st.session_state.skills, "Intermediate")
|
119 |
+
st.write("Recommended Courses:", courses)
|
120 |
+
st.write("Recommended Jobs:", jobs)
|
121 |
+
|
122 |
+
# Update user score in MongoDB (simplified)
|
123 |
+
users_collection.update_one(
|
124 |
+
{"_id": st.session_state.user_id},
|
125 |
+
{"$set": {"skills_scores": st.session_state.scores}}
|
126 |
+
)
|
127 |
+
st.session_state.pop('questions', None)
|
128 |
+
else:
|
129 |
+
st.write("No questions available for the detected skills.")
|
130 |
+
|
131 |
+
# Redirect to Dashboard (simulated)
|
132 |
+
if st.button("Go to Dashboard"):
|
133 |
+
st.write("Redirecting to User Dashboard...")
|
134 |
+
# In a real app, use st.experimental_rerun() or a navigation library
|