Muhammad541 commited on
Commit
aedd875
·
verified ·
1 Parent(s): eabba6f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +134 -0
app.py CHANGED
@@ -0,0 +1,134 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import pandas as pd
3
+ import pymongo
4
+ from sentence_transformers import SentenceTransformer
5
+ import numpy as np
6
+ from sklearn.feature_extraction.text import TfidfVectorizer
7
+ import pickle
8
+ import os
9
+ from datetime import datetime
10
+
11
+ # MongoDB Connection
12
+ MONGO_URI = "mongodb://muhammadbinimran1001:[email protected]:27017,dsm-shard-00-01.inrzs.mongodb.net:27017,dsm-shard-00-02.inrzs.mongodb.net:27017/?ssl=true&replicaSet=atlas-nbg4er-shard-0&authSource=admin&retryWrites=true&w=majority"
13
+ client = pymongo.MongoClient(MONGO_URI)
14
+ db = client['test']
15
+ users_collection = db['users']
16
+ jobs_collection = db['jobs']
17
+ courses_collection = db['courses']
18
+
19
+ # Load Datasets
20
+ @st.cache_data
21
+ def load_data():
22
+ questions_df = pd.read_csv("Generated_Skill-Based_Questions.csv")
23
+ jobs_df = pd.read_csv("Updated_Job_Posting_Dataset.csv")
24
+ courses_df = pd.read_csv("coursera_course_dataset_v2_no_null.csv")
25
+ return questions_df, jobs_df, courses_df
26
+
27
+ questions_df, jobs_df, courses_df = load_data()
28
+
29
+ # Load or Initialize Model
30
+ @st.cache_resource
31
+ def load_model():
32
+ return SentenceTransformer('all-MiniLM-L6-v2')
33
+
34
+ model = load_model()
35
+ tfidf_vectorizer = TfidfVectorizer(stop_words='english')
36
+
37
+ # Skill Extraction and Question Generation
38
+ def get_user_skills(user_id):
39
+ user = users_collection.find_one({"_id": user_id})
40
+ return user.get("skills", []) if user else []
41
+
42
+ def get_questions_for_skills(skills):
43
+ questions = []
44
+ for skill in skills:
45
+ skill_questions = questions_df[questions_df['Skill'] == skill].sample(1)
46
+ if not skill_questions.empty:
47
+ questions.append(skill_questions.iloc[0])
48
+ return pd.DataFrame(questions) if questions else None
49
+
50
+ # Answer Evaluation
51
+ def evaluate_answer(user_answer, expected_answer):
52
+ user_embedding = model.encode([user_answer], convert_to_tensor=True)[0]
53
+ expected_embedding = model.encode([expected_answer], convert_to_tensor=True)[0]
54
+ score = util.pytorch_cos_sim(user_embedding, expected_embedding).item() * 100
55
+ return max(0, round(score, 2))
56
+
57
+ # Recommendation Logic
58
+ def recommend_courses(skills, user_level):
59
+ skill_indices = [questions_df.index[questions_df['Skill'] == skill].tolist()[0] for skill in skills if skill in questions_df['Skill'].values]
60
+ if not skill_indices:
61
+ return []
62
+ course_skills = courses_df['skills'].fillna("").tolist()
63
+ course_embeddings = model.encode(course_skills, convert_to_tensor=True)
64
+ skill_embeddings = model.encode(skills, convert_to_tensor=True)
65
+ similarities = util.pytorch_cos_sim(skill_embeddings, course_embeddings).cpu().numpy()
66
+ total_scores = 0.6 * np.max(similarities, axis=0)
67
+ idx = np.argsort(-total_scores)[:3]
68
+ return courses_df.iloc[idx][['course_title', 'Organization']].values.tolist()
69
+
70
+ def recommend_jobs(skills, user_level):
71
+ skill_indices = [questions_df.index[questions_df['Skill'] == skill].tolist()[0] for skill in skills if skill in questions_df['Skill'].values]
72
+ if not skill_indices:
73
+ return []
74
+ job_skills = jobs_df['required_skills'].fillna("").tolist()
75
+ job_embeddings = model.encode(job_skills, convert_to_tensor=True)
76
+ skill_embeddings = model.encode(skills, convert_to_tensor=True)
77
+ similarities = util.pytorch_cos_sim(skill_embeddings, job_embeddings).cpu().numpy()
78
+ total_scores = 0.5 * np.max(similarities, axis=0)
79
+ idx = np.argsort(-total_scores)[:3]
80
+ return jobs_df.iloc[idx][['job_title', 'company_name', 'location']].values.tolist()
81
+
82
+ # Streamlit App
83
+ st.title("Skill Assessment & Recommendation")
84
+
85
+ # Simulate User Signup (for demo, replace with actual auth)
86
+ if 'user_id' not in st.session_state:
87
+ st.session_state.user_id = "68233a6b7c0fd8f9d6994e" # Example user ID
88
+ st.session_state.skills = get_user_skills(st.session_state.user_id)
89
+ st.session_state.scores = {}
90
+
91
+ if not st.session_state.skills:
92
+ st.write("No skills found. Please update your profile with skills during signup.")
93
+ else:
94
+ st.write(f"Detected Skills: {st.session_state.skills}")
95
+
96
+ if 'questions' not in st.session_state:
97
+ st.session_state.questions = get_questions_for_skills(st.session_state.skills)
98
+ if st.session_state.questions is not None:
99
+ st.session_state.questions = st.session_state.questions.reset_index(drop=True)
100
+
101
+ if st.session_state.questions is not None and not st.session_state.questions.empty:
102
+ for idx, row in st.session_state.questions.iterrows():
103
+ st.subheader(f"Question for {row['Skill']}")
104
+ user_answer = st.text_area(f"Question: {row['Question']}", key=f"answer_{idx}")
105
+ if st.button(f"Submit Answer for {row['Skill']}", key=f"submit_{idx}"):
106
+ score = evaluate_answer(user_answer, row['Answer'])
107
+ st.session_state.scores[row['Skill']] = score
108
+ st.success(f"Score for {row['Skill']}: {score}%")
109
+
110
+ if all(skill in st.session_state.scores for skill in st.session_state.skills):
111
+ st.write("Assessment Complete!")
112
+ mean_score = np.mean(list(st.session_state.scores.values()))
113
+ weak_skills = [s for s, score in st.session_state.scores.items() if score < 60]
114
+ st.write(f"Mean Score: {mean_score:.2f}%")
115
+ st.write(f"Weak Skills: {weak_skills}")
116
+
117
+ courses = recommend_courses(weak_skills or st.session_state.skills, "Intermediate")
118
+ jobs = recommend_jobs(st.session_state.skills, "Intermediate")
119
+ st.write("Recommended Courses:", courses)
120
+ st.write("Recommended Jobs:", jobs)
121
+
122
+ # Update user score in MongoDB (simplified)
123
+ users_collection.update_one(
124
+ {"_id": st.session_state.user_id},
125
+ {"$set": {"skills_scores": st.session_state.scores}}
126
+ )
127
+ st.session_state.pop('questions', None)
128
+ else:
129
+ st.write("No questions available for the detected skills.")
130
+
131
+ # Redirect to Dashboard (simulated)
132
+ if st.button("Go to Dashboard"):
133
+ st.write("Redirecting to User Dashboard...")
134
+ # In a real app, use st.experimental_rerun() or a navigation library