LeCarnet-Demo / app.py
MaxLSB's picture
Update app.py
9be0b0d verified
raw
history blame
4.02 kB
import os
import threading
import gradio as gr
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
TextIteratorStreamer,
)
# Define your models
MODEL_PATHS = {
"LeCarnet-3M": "MaxLSB/LeCarnet-3M",
"LeCarnet-8M": "MaxLSB/LeCarnet-8M",
"LeCarnet-21M": "MaxLSB/LeCarnet-21M",
}
# Add your Hugging Face token
hf_token = os.environ.get("HUGGINGFACEHUB_API_TOKEN")
if not hf_token:
raise ValueError("HUGGINGFACEHUB_API_TOKEN environment variable not set.")
# Load tokenizers & models - only load one initially
tokenizer = None
model = None
def load_model(model_name: str):
"""Loads the specified model and tokenizer."""
global tokenizer, model
if model_name not in MODEL_PATHS:
raise ValueError(f"Unknown model: {model_name}")
print(f"Loading {model_name}...")
repo = MODEL_PATHS[model_name]
tokenizer = AutoTokenizer.from_pretrained(repo, use_auth_token=hf_token)
model = AutoModelForCausalLM.from_pretrained(repo, use_auth_token=hf_token)
model.eval()
print(f"{model_name} loaded.")
# Initial model load
initial_model = list(MODEL_PATHS.keys())[0]
load_model(initial_model)
def respond(
prompt: str,
chat_history: list,
model_choice: str,
max_tokens: int,
temperature: float,
top_p: float,
):
global tokenizer, model
# Reload model if it's not the currently loaded one
current_path = getattr(model.config, "_name_or_path", None)
desired_path = MODEL_PATHS[model_choice]
if current_path != desired_path:
load_model(model_choice)
# Tokenize
inputs = tokenizer(prompt, return_tensors="pt")
streamer = TextIteratorStreamer(
tokenizer,
skip_prompt=False,
skip_special_tokens=True,
)
# Prepare generation kwargs
generate_kwargs = dict(
**inputs,
streamer=streamer,
max_new_tokens=max_tokens,
do_sample=True,
temperature=temperature,
top_p=top_p,
eos_token_id=tokenizer.eos_token_id,
)
# Launch generation in a background thread
thread = threading.Thread(target=model.generate, kwargs=generate_kwargs)
thread.start()
# Stream back to the UI
accumulated = ""
for new_text in streamer:
accumulated += new_text
yield accumulated
# If you have custom CSS, define it here; otherwise set to None or remove the css= line below
custom_css = None
with gr.Blocks(css=custom_css, fill_width=True) as demo:
with gr.Row():
with gr.Column(scale=1):
model_dropdown = gr.Dropdown(
choices=list(MODEL_PATHS.keys()),
value=initial_model,
label="Choose Model",
interactive=True
)
max_tokens_slider = gr.Slider(
minimum=1, maximum=512, value=512, step=1, label="Max new tokens"
)
temperature_slider = gr.Slider(
minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"
)
top_p_slider = gr.Slider(
minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="Top‑p"
)
with gr.Column(scale=3):
chatbot = gr.ChatInterface(
fn=respond,
additional_inputs=[
model_dropdown,
max_tokens_slider,
temperature_slider,
top_p_slider,
],
examples=[
["Il était une fois un petit garçon qui vivait dans un village paisible."],
["Il était une fois une grenouille qui rêvait de toucher les étoiles chaque nuit depuis son étang."],
["Il était une fois un petit lapin perdu"],
],
cache_examples=False,
submit_btn="Generate",
avatar_images=(None, "media/le-carnet.png")
)
if __name__ == "__main__":
demo.queue()
demo.launch()