Spaces:
Sleeping
Sleeping
import os | |
import threading | |
import gradio as gr | |
from transformers import ( | |
AutoModelForCausalLM, | |
AutoTokenizer, | |
TextIteratorStreamer, | |
) | |
# Define your models | |
MODEL_PATHS = { | |
"LeCarnet-3M": "MaxLSB/LeCarnet-3M", | |
"LeCarnet-8M": "MaxLSB/LeCarnet-8M", | |
"LeCarnet-21M": "MaxLSB/LeCarnet-21M", | |
} | |
# Add your Hugging Face token | |
hf_token = os.environ.get("HUGGINGFACEHUB_API_TOKEN") | |
if not hf_token: | |
raise ValueError("HUGGINGFACEHUB_API_TOKEN environment variable not set.") | |
# Load tokenizers & models - only load one initially | |
tokenizer = None | |
model = None | |
def load_model(model_name: str): | |
"""Loads the specified model and tokenizer.""" | |
global tokenizer, model | |
if model_name not in MODEL_PATHS: | |
raise ValueError(f"Unknown model: {model_name}") | |
print(f"Loading {model_name}...") | |
repo = MODEL_PATHS[model_name] | |
tokenizer = AutoTokenizer.from_pretrained(repo, use_auth_token=hf_token) | |
model = AutoModelForCausalLM.from_pretrained(repo, use_auth_token=hf_token) | |
model.eval() | |
print(f"{model_name} loaded.") | |
# Initial model load | |
initial_model = list(MODEL_PATHS.keys())[0] | |
load_model(initial_model) | |
def respond( | |
prompt: str, | |
chat_history: list, | |
model_choice: str, | |
max_tokens: int, | |
temperature: float, | |
top_p: float, | |
): | |
global tokenizer, model | |
# Reload model if it's not the currently loaded one | |
current_path = getattr(model.config, "_name_or_path", None) | |
desired_path = MODEL_PATHS[model_choice] | |
if current_path != desired_path: | |
load_model(model_choice) | |
# Tokenize | |
inputs = tokenizer(prompt, return_tensors="pt") | |
streamer = TextIteratorStreamer( | |
tokenizer, | |
skip_prompt=False, | |
skip_special_tokens=True, | |
) | |
# Prepare generation kwargs | |
generate_kwargs = dict( | |
**inputs, | |
streamer=streamer, | |
max_new_tokens=max_tokens, | |
do_sample=True, | |
temperature=temperature, | |
top_p=top_p, | |
eos_token_id=tokenizer.eos_token_id, | |
) | |
# Launch generation in a background thread | |
thread = threading.Thread(target=model.generate, kwargs=generate_kwargs) | |
thread.start() | |
# Stream back to the UI | |
accumulated = "" | |
for new_text in streamer: | |
accumulated += new_text | |
yield accumulated | |
# If you have custom CSS, define it here; otherwise set to None or remove the css= line below | |
custom_css = None | |
with gr.Blocks(css=custom_css, fill_width=True) as demo: | |
with gr.Row(): | |
with gr.Column(scale=1): | |
model_dropdown = gr.Dropdown( | |
choices=list(MODEL_PATHS.keys()), | |
value=initial_model, | |
label="Choose Model", | |
interactive=True | |
) | |
max_tokens_slider = gr.Slider( | |
minimum=1, maximum=512, value=512, step=1, label="Max new tokens" | |
) | |
temperature_slider = gr.Slider( | |
minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature" | |
) | |
top_p_slider = gr.Slider( | |
minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="Top‑p" | |
) | |
with gr.Column(scale=3): | |
chatbot = gr.ChatInterface( | |
fn=respond, | |
additional_inputs=[ | |
model_dropdown, | |
max_tokens_slider, | |
temperature_slider, | |
top_p_slider, | |
], | |
examples=[ | |
["Il était une fois un petit garçon qui vivait dans un village paisible."], | |
["Il était une fois une grenouille qui rêvait de toucher les étoiles chaque nuit depuis son étang."], | |
["Il était une fois un petit lapin perdu"], | |
], | |
cache_examples=False, | |
submit_btn="Generate", | |
avatar_images=(None, "media/le-carnet.png") | |
) | |
if __name__ == "__main__": | |
demo.queue() | |
demo.launch() | |