File size: 4,017 Bytes
36942d4
852d26e
 
 
 
 
 
 
cee13f4
f0687e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9be0b0d
f0687e5
 
 
 
 
 
9be0b0d
 
 
f0687e5
 
 
 
 
 
341bd22
 
 
852d26e
9be0b0d
f0687e5
852d26e
 
 
341bd22
f0687e5
9be0b0d
f0687e5
9be0b0d
 
 
f0687e5
341bd22
9be0b0d
f0687e5
852d26e
 
485360d
852d26e
 
9be0b0d
 
852d26e
 
 
2918965
852d26e
341bd22
 
b56c1a4
852d26e
9be0b0d
 
852d26e
 
9be0b0d
 
852d26e
 
 
 
341bd22
f0687e5
9be0b0d
 
 
 
63d4a2a
 
 
 
 
 
 
 
 
9be0b0d
63d4a2a
 
9be0b0d
63d4a2a
 
9be0b0d
f0687e5
 
63d4a2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
341bd22
 
e2b2cdb
9be0b0d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import os
import threading
import gradio as gr
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    TextIteratorStreamer,
)

# Define your models
MODEL_PATHS = {
    "LeCarnet-3M": "MaxLSB/LeCarnet-3M",
    "LeCarnet-8M": "MaxLSB/LeCarnet-8M",
    "LeCarnet-21M": "MaxLSB/LeCarnet-21M",
}

# Add your Hugging Face token
hf_token = os.environ.get("HUGGINGFACEHUB_API_TOKEN")
if not hf_token:
    raise ValueError("HUGGINGFACEHUB_API_TOKEN environment variable not set.")

# Load tokenizers & models - only load one initially
tokenizer = None
model = None

def load_model(model_name: str):
    """Loads the specified model and tokenizer."""
    global tokenizer, model
    if model_name not in MODEL_PATHS:
        raise ValueError(f"Unknown model: {model_name}")

    print(f"Loading {model_name}...")
    repo = MODEL_PATHS[model_name]
    tokenizer = AutoTokenizer.from_pretrained(repo, use_auth_token=hf_token)
    model = AutoModelForCausalLM.from_pretrained(repo, use_auth_token=hf_token)
    model.eval()
    print(f"{model_name} loaded.")

# Initial model load
initial_model = list(MODEL_PATHS.keys())[0]
load_model(initial_model)


def respond(
    prompt: str,
    chat_history: list,
    model_choice: str,
    max_tokens: int,
    temperature: float,
    top_p: float,
):
    global tokenizer, model

    # Reload model if it's not the currently loaded one
    current_path = getattr(model.config, "_name_or_path", None)
    desired_path = MODEL_PATHS[model_choice]
    if current_path != desired_path:
        load_model(model_choice)

    # Tokenize
    inputs = tokenizer(prompt, return_tensors="pt")
    streamer = TextIteratorStreamer(
        tokenizer,
        skip_prompt=False,
        skip_special_tokens=True,
    )

    # Prepare generation kwargs
    generate_kwargs = dict(
        **inputs,
        streamer=streamer,
        max_new_tokens=max_tokens,
        do_sample=True,
        temperature=temperature,
        top_p=top_p,
        eos_token_id=tokenizer.eos_token_id,
    )

    # Launch generation in a background thread
    thread = threading.Thread(target=model.generate, kwargs=generate_kwargs)
    thread.start()

    # Stream back to the UI
    accumulated = ""
    for new_text in streamer:
        accumulated += new_text
        yield accumulated


# If you have custom CSS, define it here; otherwise set to None or remove the css= line below
custom_css = None

with gr.Blocks(css=custom_css, fill_width=True) as demo:
    with gr.Row():
        with gr.Column(scale=1):
            model_dropdown = gr.Dropdown(
                choices=list(MODEL_PATHS.keys()),
                value=initial_model,
                label="Choose Model",
                interactive=True
            )
            max_tokens_slider = gr.Slider(
                minimum=1, maximum=512, value=512, step=1, label="Max new tokens"
            )
            temperature_slider = gr.Slider(
                minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"
            )
            top_p_slider = gr.Slider(
                minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="Top‑p"
            )

        with gr.Column(scale=3):
            chatbot = gr.ChatInterface(
                fn=respond,
                additional_inputs=[
                    model_dropdown,
                    max_tokens_slider,
                    temperature_slider,
                    top_p_slider,
                ],
                examples=[
                    ["Il était une fois un petit garçon qui vivait dans un village paisible."],
                    ["Il était une fois une grenouille qui rêvait de toucher les étoiles chaque nuit depuis son étang."],
                    ["Il était une fois un petit lapin perdu"],
                ],
                cache_examples=False,
                submit_btn="Generate",
                avatar_images=(None, "media/le-carnet.png")
            )

if __name__ == "__main__":
    demo.queue()
    demo.launch()