Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,47 +1,67 @@
|
|
1 |
import os
|
2 |
-
import
|
3 |
-
from huggingface_hub import InferenceClient
|
4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
client = InferenceClient("MaxLSB/LeCarnet-8M", token=hf_token)
|
8 |
|
|
|
|
|
|
|
|
|
9 |
|
10 |
def respond(
|
11 |
-
prompt,
|
12 |
chat_history,
|
13 |
-
max_tokens,
|
14 |
-
temperature,
|
15 |
-
top_p,
|
16 |
):
|
17 |
-
|
18 |
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
max_new_tokens=max_tokens,
|
|
|
22 |
temperature=temperature,
|
23 |
top_p=top_p,
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
|
|
28 |
|
|
|
|
|
|
|
|
|
|
|
29 |
|
|
|
30 |
demo = gr.ChatInterface(
|
31 |
-
respond,
|
32 |
additional_inputs=[
|
33 |
-
gr.Slider(
|
34 |
-
gr.Slider(
|
35 |
-
gr.Slider(
|
36 |
-
minimum=0.1,
|
37 |
-
maximum=1.0,
|
38 |
-
value=0.95,
|
39 |
-
step=0.05,
|
40 |
-
label="Top-p (nucleus sampling)",
|
41 |
-
),
|
42 |
],
|
|
|
|
|
43 |
)
|
44 |
|
45 |
-
|
46 |
if __name__ == "__main__":
|
47 |
demo.launch()
|
|
|
1 |
import os
|
2 |
+
import threading
|
|
|
3 |
|
4 |
+
import gradio as gr
|
5 |
+
import torch
|
6 |
+
from transformers import (
|
7 |
+
AutoModelForCausalLM,
|
8 |
+
AutoTokenizer,
|
9 |
+
TextIteratorStreamer,
|
10 |
+
)
|
11 |
|
12 |
+
MODEL_NAME = "MaxLSB/LeCarnet-8M"
|
|
|
13 |
|
14 |
+
# Load tokenizer & model locally
|
15 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
16 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
|
17 |
+
model.eval()
|
18 |
|
19 |
def respond(
|
20 |
+
prompt: str,
|
21 |
chat_history,
|
22 |
+
max_tokens: int,
|
23 |
+
temperature: float,
|
24 |
+
top_p: float,
|
25 |
):
|
26 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
27 |
|
28 |
+
# Text streamer to get one token at a time
|
29 |
+
streamer = TextIteratorStreamer(
|
30 |
+
tokenizer,
|
31 |
+
skip_prompt=True,
|
32 |
+
skip_special_tokens=True,
|
33 |
+
)
|
34 |
+
|
35 |
+
generate_kwargs = dict(
|
36 |
+
**inputs,
|
37 |
+
streamer=streamer,
|
38 |
max_new_tokens=max_tokens,
|
39 |
+
do_sample=True,
|
40 |
temperature=temperature,
|
41 |
top_p=top_p,
|
42 |
+
)
|
43 |
+
|
44 |
+
# Kick off generation in background
|
45 |
+
thread = threading.Thread(target=model.generate, kwargs=generate_kwargs)
|
46 |
+
thread.start()
|
47 |
|
48 |
+
# Stream out partial completions
|
49 |
+
accumulated = ""
|
50 |
+
for new_text in streamer:
|
51 |
+
accumulated += new_text
|
52 |
+
yield accumulated
|
53 |
|
54 |
+
# Wire it up in Gradio
|
55 |
demo = gr.ChatInterface(
|
56 |
+
fn=respond,
|
57 |
additional_inputs=[
|
58 |
+
gr.Slider(1, 512, value=128, step=1, label="Max new tokens"),
|
59 |
+
gr.Slider(0.1, 2.0, value=0.7, step=0.1, label="Temperature"),
|
60 |
+
gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Top‑p"),
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
],
|
62 |
+
title="Prefix Completion Demo",
|
63 |
+
description="Type the beginning of a sentence and watch the model finish it.",
|
64 |
)
|
65 |
|
|
|
66 |
if __name__ == "__main__":
|
67 |
demo.launch()
|