Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -23,15 +23,16 @@ if not hf_token:
|
|
| 23 |
tokenizer = None
|
| 24 |
model = None
|
| 25 |
|
| 26 |
-
def load_model(model_name):
|
| 27 |
"""Loads the specified model and tokenizer."""
|
| 28 |
global tokenizer, model
|
| 29 |
if model_name not in MODEL_PATHS:
|
| 30 |
raise ValueError(f"Unknown model: {model_name}")
|
| 31 |
|
| 32 |
print(f"Loading {model_name}...")
|
| 33 |
-
|
| 34 |
-
|
|
|
|
| 35 |
model.eval()
|
| 36 |
print(f"{model_name} loaded.")
|
| 37 |
|
|
@@ -42,23 +43,29 @@ load_model(initial_model)
|
|
| 42 |
|
| 43 |
def respond(
|
| 44 |
prompt: str,
|
| 45 |
-
chat_history,
|
| 46 |
model_choice: str,
|
| 47 |
max_tokens: int,
|
| 48 |
temperature: float,
|
| 49 |
top_p: float,
|
| 50 |
):
|
| 51 |
global tokenizer, model
|
|
|
|
| 52 |
# Reload model if it's not the currently loaded one
|
| 53 |
-
|
|
|
|
|
|
|
| 54 |
load_model(model_choice)
|
| 55 |
|
|
|
|
| 56 |
inputs = tokenizer(prompt, return_tensors="pt")
|
| 57 |
streamer = TextIteratorStreamer(
|
| 58 |
tokenizer,
|
| 59 |
skip_prompt=False,
|
| 60 |
skip_special_tokens=True,
|
| 61 |
)
|
|
|
|
|
|
|
| 62 |
generate_kwargs = dict(
|
| 63 |
**inputs,
|
| 64 |
streamer=streamer,
|
|
@@ -68,15 +75,22 @@ def respond(
|
|
| 68 |
top_p=top_p,
|
| 69 |
eos_token_id=tokenizer.eos_token_id,
|
| 70 |
)
|
|
|
|
|
|
|
| 71 |
thread = threading.Thread(target=model.generate, kwargs=generate_kwargs)
|
| 72 |
thread.start()
|
|
|
|
|
|
|
| 73 |
accumulated = ""
|
| 74 |
for new_text in streamer:
|
| 75 |
accumulated += new_text
|
| 76 |
yield accumulated
|
| 77 |
|
| 78 |
|
| 79 |
-
|
|
|
|
|
|
|
|
|
|
| 80 |
with gr.Row():
|
| 81 |
with gr.Column(scale=1):
|
| 82 |
model_dropdown = gr.Dropdown(
|
|
@@ -86,13 +100,13 @@ with gr.Blocks(css=css, fill_width=True) as demo:
|
|
| 86 |
interactive=True
|
| 87 |
)
|
| 88 |
max_tokens_slider = gr.Slider(
|
| 89 |
-
1, 512, value=512, step=1, label="Max new tokens"
|
| 90 |
)
|
| 91 |
temperature_slider = gr.Slider(
|
| 92 |
-
0.1, 2.0, value=0.7, step=0.1, label="Temperature"
|
| 93 |
)
|
| 94 |
top_p_slider = gr.Slider(
|
| 95 |
-
0.1, 1.0, value=0.9, step=0.05, label="Top‑p"
|
| 96 |
)
|
| 97 |
|
| 98 |
with gr.Column(scale=3):
|
|
@@ -116,4 +130,4 @@ with gr.Blocks(css=css, fill_width=True) as demo:
|
|
| 116 |
|
| 117 |
if __name__ == "__main__":
|
| 118 |
demo.queue()
|
| 119 |
-
demo.launch()
|
|
|
|
| 23 |
tokenizer = None
|
| 24 |
model = None
|
| 25 |
|
| 26 |
+
def load_model(model_name: str):
|
| 27 |
"""Loads the specified model and tokenizer."""
|
| 28 |
global tokenizer, model
|
| 29 |
if model_name not in MODEL_PATHS:
|
| 30 |
raise ValueError(f"Unknown model: {model_name}")
|
| 31 |
|
| 32 |
print(f"Loading {model_name}...")
|
| 33 |
+
repo = MODEL_PATHS[model_name]
|
| 34 |
+
tokenizer = AutoTokenizer.from_pretrained(repo, use_auth_token=hf_token)
|
| 35 |
+
model = AutoModelForCausalLM.from_pretrained(repo, use_auth_token=hf_token)
|
| 36 |
model.eval()
|
| 37 |
print(f"{model_name} loaded.")
|
| 38 |
|
|
|
|
| 43 |
|
| 44 |
def respond(
|
| 45 |
prompt: str,
|
| 46 |
+
chat_history: list,
|
| 47 |
model_choice: str,
|
| 48 |
max_tokens: int,
|
| 49 |
temperature: float,
|
| 50 |
top_p: float,
|
| 51 |
):
|
| 52 |
global tokenizer, model
|
| 53 |
+
|
| 54 |
# Reload model if it's not the currently loaded one
|
| 55 |
+
current_path = getattr(model.config, "_name_or_path", None)
|
| 56 |
+
desired_path = MODEL_PATHS[model_choice]
|
| 57 |
+
if current_path != desired_path:
|
| 58 |
load_model(model_choice)
|
| 59 |
|
| 60 |
+
# Tokenize
|
| 61 |
inputs = tokenizer(prompt, return_tensors="pt")
|
| 62 |
streamer = TextIteratorStreamer(
|
| 63 |
tokenizer,
|
| 64 |
skip_prompt=False,
|
| 65 |
skip_special_tokens=True,
|
| 66 |
)
|
| 67 |
+
|
| 68 |
+
# Prepare generation kwargs
|
| 69 |
generate_kwargs = dict(
|
| 70 |
**inputs,
|
| 71 |
streamer=streamer,
|
|
|
|
| 75 |
top_p=top_p,
|
| 76 |
eos_token_id=tokenizer.eos_token_id,
|
| 77 |
)
|
| 78 |
+
|
| 79 |
+
# Launch generation in a background thread
|
| 80 |
thread = threading.Thread(target=model.generate, kwargs=generate_kwargs)
|
| 81 |
thread.start()
|
| 82 |
+
|
| 83 |
+
# Stream back to the UI
|
| 84 |
accumulated = ""
|
| 85 |
for new_text in streamer:
|
| 86 |
accumulated += new_text
|
| 87 |
yield accumulated
|
| 88 |
|
| 89 |
|
| 90 |
+
# If you have custom CSS, define it here; otherwise set to None or remove the css= line below
|
| 91 |
+
custom_css = None
|
| 92 |
+
|
| 93 |
+
with gr.Blocks(css=custom_css, fill_width=True) as demo:
|
| 94 |
with gr.Row():
|
| 95 |
with gr.Column(scale=1):
|
| 96 |
model_dropdown = gr.Dropdown(
|
|
|
|
| 100 |
interactive=True
|
| 101 |
)
|
| 102 |
max_tokens_slider = gr.Slider(
|
| 103 |
+
minimum=1, maximum=512, value=512, step=1, label="Max new tokens"
|
| 104 |
)
|
| 105 |
temperature_slider = gr.Slider(
|
| 106 |
+
minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"
|
| 107 |
)
|
| 108 |
top_p_slider = gr.Slider(
|
| 109 |
+
minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="Top‑p"
|
| 110 |
)
|
| 111 |
|
| 112 |
with gr.Column(scale=3):
|
|
|
|
| 130 |
|
| 131 |
if __name__ == "__main__":
|
| 132 |
demo.queue()
|
| 133 |
+
demo.launch()
|