File size: 1,584 Bytes
36942d4
852d26e
 
 
 
 
 
 
cee13f4
852d26e
095073f
341bd22
852d26e
095073f
 
852d26e
341bd22
 
852d26e
fc2aea6
852d26e
 
 
341bd22
852d26e
341bd22
852d26e
 
 
 
 
 
 
 
 
2918965
852d26e
341bd22
 
852d26e
 
 
 
341bd22
852d26e
 
 
 
341bd22
852d26e
341bd22
852d26e
341bd22
852d26e
 
 
341bd22
852d26e
 
341bd22
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import os
import threading
import gradio as gr
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    TextIteratorStreamer,
)

MODEL_NAME = "MaxLSB/LeCarnet-8M"
hf_token = os.environ["HUGGINGFACEHUB_API_TOKEN"]

# Load tokenizer & model locally
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, token=hf_token)
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, token=hf_token)
model.eval()

def respond(
    prompt: str,
    chat_history,
    max_tokens: int,
    temperature: float,
    top_p: float,
):
    inputs = tokenizer(prompt, return_tensors="pt")

    streamer = TextIteratorStreamer(
        tokenizer,
        skip_prompt=True,
        skip_special_tokens=True,
    )

    generate_kwargs = dict(
        **inputs,
        streamer=streamer,
        max_new_tokens=max_tokens,
        do_sample=True,
        temperature=temperature,
        top_p=top_p,
    )

    thread = threading.Thread(target=model.generate, kwargs=generate_kwargs)
    thread.start()

    accumulated = ""
    for new_text in streamer:
        accumulated += new_text
        yield accumulated

# Wire it up in Gradio
demo = gr.ChatInterface(
    fn=respond,
    additional_inputs=[
        gr.Slider(1, 512, value=128, step=1, label="Max new tokens"),
        gr.Slider(0.1, 2.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Top‑p"),
    ],
    title="Prefix Completion Demo",
    description="Type the beginning of a sentence and watch the model finish it.",
)

if __name__ == "__main__":
    demo.launch()