Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -8,10 +8,11 @@ from transformers import (
|
|
8 |
)
|
9 |
|
10 |
MODEL_NAME = "MaxLSB/LeCarnet-8M"
|
|
|
11 |
|
12 |
# Load tokenizer & model locally
|
13 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
14 |
-
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
|
15 |
model.eval()
|
16 |
|
17 |
def respond(
|
@@ -23,7 +24,6 @@ def respond(
|
|
23 |
):
|
24 |
inputs = tokenizer(prompt, return_tensors="pt")
|
25 |
|
26 |
-
# Text streamer to get one token at a time
|
27 |
streamer = TextIteratorStreamer(
|
28 |
tokenizer,
|
29 |
skip_prompt=True,
|
@@ -39,11 +39,9 @@ def respond(
|
|
39 |
top_p=top_p,
|
40 |
)
|
41 |
|
42 |
-
# Kick off generation in background
|
43 |
thread = threading.Thread(target=model.generate, kwargs=generate_kwargs)
|
44 |
thread.start()
|
45 |
|
46 |
-
# Stream out partial completions
|
47 |
accumulated = ""
|
48 |
for new_text in streamer:
|
49 |
accumulated += new_text
|
|
|
8 |
)
|
9 |
|
10 |
MODEL_NAME = "MaxLSB/LeCarnet-8M"
|
11 |
+
hf_token = os.environ["HUGGINGFACEHUB_API_TOKEN"]
|
12 |
|
13 |
# Load tokenizer & model locally
|
14 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, token=hf_token)
|
15 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, token=hf_token)
|
16 |
model.eval()
|
17 |
|
18 |
def respond(
|
|
|
24 |
):
|
25 |
inputs = tokenizer(prompt, return_tensors="pt")
|
26 |
|
|
|
27 |
streamer = TextIteratorStreamer(
|
28 |
tokenizer,
|
29 |
skip_prompt=True,
|
|
|
39 |
top_p=top_p,
|
40 |
)
|
41 |
|
|
|
42 |
thread = threading.Thread(target=model.generate, kwargs=generate_kwargs)
|
43 |
thread.start()
|
44 |
|
|
|
45 |
accumulated = ""
|
46 |
for new_text in streamer:
|
47 |
accumulated += new_text
|