Spaces:
Sleeping
Sleeping
import os | |
import spacy | |
import gradio as gr | |
from sentence_transformers import SentenceTransformer | |
from sklearn.metrics.pairwise import cosine_similarity | |
import numpy as np | |
import zipfile | |
# Percorso del file zip | |
zip_path = '/mnt/data/en_core_web_sm.zip' # o il percorso che hai trovato | |
# Directory in cui estrarre il modello | |
extraction_dir = '/mnt/data/en_core_web_sm' # o il percorso di estrazione scelto | |
# Estrai il file zip | |
with zipfile.ZipFile(zip_path, 'r') as zip_ref: | |
zip_ref.extractall(extraction_dir) | |
# Carica il modello Spacy | |
nlp = spacy.load(extraction_dir) | |
# Carica il modello SentenceTransformer | |
model = SentenceTransformer('sentence-transformers/all-mpnet-base-v2', device='cpu') | |
# Preprocessamento manuale (carica il manuale da un file o base di dati) | |
with open('testo.txt', 'r', encoding='utf-8') as file: | |
text = file.read() | |
# Tokenizza il testo in frasi usando SpaCy | |
doc = nlp(text) | |
sentences = [sent.text for sent in doc.sents] # Estrarre frasi dal testo | |
# Crea gli embedding per il manuale | |
embeddings = model.encode(sentences, batch_size=8, show_progress_bar=True) | |
# Funzione per ottenere le frasi più rilevanti | |
# Funzione per ottenere le frasi più rilevanti | |
def find_relevant_sentences(query): | |
query_embedding = model.encode([query]) | |
similarities = cosine_similarity(query_embedding, embeddings).flatten() | |
# Filtra i risultati in base alla similitudine | |
threshold = 0.2 | |
filtered_results = [(idx, sim) for idx, sim in enumerate(similarities) if sim >= threshold] | |
if not filtered_results: # Se nessun risultato supera la soglia | |
return ["No relevant sentences found."] | |
# Ordina i risultati per similitudine | |
filtered_results.sort(key=lambda x: x[1], reverse=True) | |
# Limita i risultati alle top_n frasi | |
top_n = 4 | |
relevant_sentences = [sentences[idx] for idx, _ in filtered_results[:top_n]] | |
# Rimuove duplicati e segmenta in frasi | |
unique_sentences = list(dict.fromkeys(relevant_sentences)) # Mantiene l'ordine | |
doc = nlp(" ".join(unique_sentences)) | |
grouped_results = [sent.text.strip() for sent in doc.sents] | |
return grouped_results | |
examples = [ | |
["irresponsible use of the machine?"], | |
["If I have a problem how can I get help? "], | |
["precautions when using the cutting machine"], | |
["How do I change the knife of the cutting machine?"] | |
["Uso irresponsable de la máquina cortadora ?"] | |
] | |
# Interfaccia Gradio | |
iface = gr.Interface( | |
fn=find_relevant_sentences, | |
inputs=gr.Textbox(label="Insert your query"), | |
outputs=gr.Textbox(label="Relevant sentences"), | |
examples=examples, | |
title="Manual Querying System", | |
description="Enter a question about the machine, and this tool will find the most relevant sentences from the manual." | |
) | |
# Avvia l'app Gradio | |
iface.launch() | |