Spaces:
Sleeping
Sleeping
| import os | |
| import spacy | |
| import gradio as gr | |
| from sentence_transformers import SentenceTransformer | |
| from sklearn.metrics.pairwise import cosine_similarity | |
| import numpy as np | |
| import zipfile | |
| # Percorso del file zip | |
| zip_path = '/mnt/data/en_core_web_sm.zip' # o il percorso che hai trovato | |
| # Directory in cui estrarre il modello | |
| extraction_dir = '/mnt/data/en_core_web_sm' # o il percorso di estrazione scelto | |
| # Estrai il file zip | |
| with zipfile.ZipFile(zip_path, 'r') as zip_ref: | |
| zip_ref.extractall(extraction_dir) | |
| # Carica il modello Spacy | |
| nlp = spacy.load(extraction_dir) | |
| # Carica il modello SentenceTransformer | |
| model = SentenceTransformer('sentence-transformers/all-mpnet-base-v2', device='cpu') | |
| # Preprocessamento manuale (carica il manuale da un file o base di dati) | |
| with open('testo.txt', 'r', encoding='utf-8') as file: | |
| text = file.read() | |
| # Tokenizza il testo in frasi usando SpaCy | |
| doc = nlp(text) | |
| sentences = [sent.text for sent in doc.sents] # Estrarre frasi dal testo | |
| # Crea gli embedding per il manuale | |
| embeddings = model.encode(sentences, batch_size=8, show_progress_bar=True) | |
| # Funzione per ottenere le frasi più rilevanti | |
| # Funzione per ottenere le frasi più rilevanti | |
| def find_relevant_sentences(query): | |
| query_embedding = model.encode([query]) | |
| similarities = cosine_similarity(query_embedding, embeddings).flatten() | |
| # Filtra i risultati in base alla similitudine | |
| threshold = 0.2 | |
| filtered_results = [(idx, sim) for idx, sim in enumerate(similarities) if sim >= threshold] | |
| if not filtered_results: # Se nessun risultato supera la soglia | |
| return ["No relevant sentences found."] | |
| # Ordina i risultati per similitudine | |
| filtered_results.sort(key=lambda x: x[1], reverse=True) | |
| # Limita i risultati alle top_n frasi | |
| top_n = 4 | |
| relevant_sentences = [sentences[idx] for idx, _ in filtered_results[:top_n]] | |
| # Rimuove duplicati e segmenta in frasi | |
| unique_sentences = list(dict.fromkeys(relevant_sentences)) # Mantiene l'ordine | |
| doc = nlp(" ".join(unique_sentences)) | |
| grouped_results = [sent.text.strip() for sent in doc.sents] | |
| return grouped_results | |
| examples = [ | |
| ["irresponsible use of the machine?"], | |
| ["If I have a problem how can I get help? "], | |
| ["precautions when using the cutting machine"], | |
| ["How do I change the knife of the cutting machine?"] | |
| ["Uso irresponsable de la máquina cortadora ?"] | |
| ] | |
| # Interfaccia Gradio | |
| iface = gr.Interface( | |
| fn=find_relevant_sentences, | |
| inputs=gr.Textbox(label="Insert your query"), | |
| outputs=gr.Textbox(label="Relevant sentences"), | |
| examples=examples, | |
| title="Manual Querying System", | |
| description="Enter a question about the machine, and this tool will find the most relevant sentences from the manual." | |
| ) | |
| # Avvia l'app Gradio | |
| iface.launch() | |