Spaces:
Sleeping
Sleeping
File size: 2,825 Bytes
38f8736 6c05acd 38f8736 351552e 38f8736 3818f5a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
import os
import spacy
import gradio as gr
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
import zipfile
# Percorso del file zip
zip_path = '/mnt/data/en_core_web_sm.zip' # o il percorso che hai trovato
# Directory in cui estrarre il modello
extraction_dir = '/mnt/data/en_core_web_sm' # o il percorso di estrazione scelto
# Estrai il file zip
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
zip_ref.extractall(extraction_dir)
# Carica il modello Spacy
nlp = spacy.load(extraction_dir)
# Carica il modello SentenceTransformer
model = SentenceTransformer('sentence-transformers/all-mpnet-base-v2', device='cpu')
# Preprocessamento manuale (carica il manuale da un file o base di dati)
with open('testo.txt', 'r', encoding='utf-8') as file:
text = file.read()
# Tokenizza il testo in frasi usando SpaCy
doc = nlp(text)
sentences = [sent.text for sent in doc.sents] # Estrarre frasi dal testo
# Crea gli embedding per il manuale
embeddings = model.encode(sentences, batch_size=8, show_progress_bar=True)
# Funzione per ottenere le frasi più rilevanti
# Funzione per ottenere le frasi più rilevanti
def find_relevant_sentences(query):
query_embedding = model.encode([query])
similarities = cosine_similarity(query_embedding, embeddings).flatten()
# Filtra i risultati in base alla similitudine
threshold = 0.2
filtered_results = [(idx, sim) for idx, sim in enumerate(similarities) if sim >= threshold]
if not filtered_results: # Se nessun risultato supera la soglia
return ["No relevant sentences found."]
# Ordina i risultati per similitudine
filtered_results.sort(key=lambda x: x[1], reverse=True)
# Limita i risultati alle top_n frasi
top_n = 4
relevant_sentences = [sentences[idx] for idx, _ in filtered_results[:top_n]]
# Rimuove duplicati e segmenta in frasi
unique_sentences = list(dict.fromkeys(relevant_sentences)) # Mantiene l'ordine
doc = nlp(" ".join(unique_sentences))
grouped_results = [sent.text.strip() for sent in doc.sents]
return grouped_results
examples = [
["irresponsible use of the machine?"],
["If I have a problem how can I get help? "],
["precautions when using the cutting machine"],
["How do I change the knife of the cutting machine?"]
["Uso irresponsable de la máquina cortadora ?"]
]
# Interfaccia Gradio
iface = gr.Interface(
fn=find_relevant_sentences,
inputs=gr.Textbox(label="Insert your query"),
outputs=gr.Textbox(label="Relevant sentences"),
examples=examples,
title="Manual Querying System",
description="Enter a question about the machine, and this tool will find the most relevant sentences from the manual."
)
# Avvia l'app Gradio
iface.launch()
|