import os import spacy import gradio as gr from sentence_transformers import SentenceTransformer from sklearn.metrics.pairwise import cosine_similarity import numpy as np import zipfile # Percorso del file zip zip_path = '/mnt/data/en_core_web_sm.zip' # o il percorso che hai trovato # Directory in cui estrarre il modello extraction_dir = '/mnt/data/en_core_web_sm' # o il percorso di estrazione scelto # Estrai il file zip with zipfile.ZipFile(zip_path, 'r') as zip_ref: zip_ref.extractall(extraction_dir) # Carica il modello Spacy nlp = spacy.load(extraction_dir) # Carica il modello SentenceTransformer model = SentenceTransformer('sentence-transformers/all-mpnet-base-v2', device='cpu') # Preprocessamento manuale (carica il manuale da un file o base di dati) with open('testo.txt', 'r', encoding='utf-8') as file: text = file.read() # Tokenizza il testo in frasi usando SpaCy doc = nlp(text) sentences = [sent.text for sent in doc.sents] # Estrarre frasi dal testo # Crea gli embedding per il manuale embeddings = model.encode(sentences, batch_size=8, show_progress_bar=True) # Funzione per ottenere le frasi più rilevanti # Funzione per ottenere le frasi più rilevanti def find_relevant_sentences(query): query_embedding = model.encode([query]) similarities = cosine_similarity(query_embedding, embeddings).flatten() # Filtra i risultati in base alla similitudine threshold = 0.2 filtered_results = [(idx, sim) for idx, sim in enumerate(similarities) if sim >= threshold] if not filtered_results: # Se nessun risultato supera la soglia return ["No relevant sentences found."] # Ordina i risultati per similitudine filtered_results.sort(key=lambda x: x[1], reverse=True) # Limita i risultati alle top_n frasi top_n = 4 relevant_sentences = [sentences[idx] for idx, _ in filtered_results[:top_n]] # Rimuove duplicati e segmenta in frasi unique_sentences = list(dict.fromkeys(relevant_sentences)) # Mantiene l'ordine doc = nlp(" ".join(unique_sentences)) grouped_results = [sent.text.strip() for sent in doc.sents] return grouped_results examples = [ ["irresponsible use of the machine?"], ["If I have a problem how can I get help? "], ["precautions when using the cutting machine"], ["How do I change the knife of the cutting machine?"] ["Uso irresponsable de la máquina cortadora ?"] ] # Interfaccia Gradio iface = gr.Interface( fn=find_relevant_sentences, inputs=gr.Textbox(label="Insert your query"), outputs=gr.Textbox(label="Relevant sentences"), examples=examples, title="Manual Querying System", description="Enter a question about the machine, and this tool will find the most relevant sentences from the manual." ) # Avvia l'app Gradio iface.launch()