File size: 3,278 Bytes
38f8736
6c05acd
317cf3c
 
72820fa
0deea66
652437c
72820fa
0deea66
816a5d4
72820fa
 
 
0deea66
72820fa
 
49bedec
72820fa
 
 
 
 
 
 
db5c016
72820fa
0cea8e5
3818f5a
72820fa
db5c016
 
3818f5a
72820fa
 
816a5d4
 
 
 
 
 
 
 
 
72820fa
 
 
 
 
 
0cea8e5
 
b474dc5
0cea8e5
 
b474dc5
72820fa
 
 
 
 
 
 
 
 
3818f5a
0cea8e5
3d3f8f8
72820fa
 
ed1dd60
72820fa
 
 
 
 
 
 
 
 
 
 
3818f5a
 
72820fa
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

import gradio as gr
from langchain_community.vectorstores import FAISS
from langchain_community.embeddings import HuggingFaceEmbeddings
from transformers import AutoModelForCausalLM, AutoTokenizer
import zipfile
import os
import torch


# Percorsi ZIP per manuali e problemi
zip_path_m = "faiss_manual_index.zip"
faiss_manual_index = "faiss_manual_index"

zip_path_p = "faiss_problems_index.zip"
faiss_problems_index = "faiss_problems_index"

# Estrazione dei file ZIP se necessario
for zip_path, output_dir in [(zip_path_m, faiss_manual_index), (zip_path_p, faiss_problems_index)]:
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)
    if os.path.exists(zip_path):
        with zipfile.ZipFile(zip_path, 'r') as zip_ref:
            zip_ref.extractall(output_dir)

# Caricamento del modello di embedding
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/LaBSE")

# Caricamento dei vectorstore FAISS
manual_vectorstore = FAISS.load_local(faiss_manual_index, embedding_model, allow_dangerous_deserialization=True)
problems_vectorstore = FAISS.load_local(faiss_problems_index, embedding_model, allow_dangerous_deserialization=True)

# Caricamento del modello GPT-J da Hugging Face
model_name = "EleutherAI/gpt-j-6B"

# Forza l'uso della CPU
model = AutoModelForCausalLM.from_pretrained(
    model_name, 
    torch_dtype=torch.float32,  # float32 per la CPU
    device_map={"": "cpu"}  # Specifica CPU come dispositivo
)

tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")

# Funzione per la ricerca e il riassunto
def search_and_summarize(query):
    # Ricerca nei manuali e problemi
    manual_results = manual_vectorstore.similarity_search(query, k=2)
    manual_output = "\n\n".join([doc.page_content for doc in manual_results])

    problems_results = problems_vectorstore.similarity_search(query, k=2)
    problems_output = "\n\n".join([doc.page_content for doc in problems_results])

    combined_text = f"Manual Results:\n{manual_output}\n\nProblems Results:\n{problems_output}"

    # Generazione del riassunto con GPT-J
    input_text = f"Riassumi le seguenti informazioni:\n{combined_text}\n\nRiassunto:"
    inputs = tokenizer(input_text, return_tensors="pt").to("cuda")
    output = model.generate(inputs.input_ids, max_length=300, temperature=0.7)
    summary = tokenizer.decode(output[0], skip_special_tokens=True)

    return manual_output, problems_output, summary

# Interfaccia Gradio
iface = gr.Interface(
    fn=search_and_summarize,
    inputs=gr.Textbox(lines=2, placeholder="Enter your question here..."),
    outputs=[
        gr.Textbox(label="Manual Results"),
        gr.Textbox(label="Issues Results"),
        gr.Textbox(label="Summary by GPT-J")
    ],
    examples=[
        ["How to change the knife?"],
        ["What are the safety precautions for using the machine?"],
        ["How can I get help with the machine?"]
    ],
    title="Manual Querying System with GPT-J Summarization",
    description="Enter a question to get information from the manual and the common issues, summarized by GPT-J."
)

# Avvia l'app Gradio
iface.launch()