from transformers import BartTokenizer, BartForConditionalGeneration | |
import torch | |
import streamlit as st | |
class Summarizer: | |
def __init__(self): | |
self.model = None | |
self.tokenizer = None | |
def load_model(self): | |
try: | |
self.tokenizer = BartTokenizer.from_pretrained('facebook/bart-base') | |
self.model = torch.load('bart_ami_finetuned.pkl') | |
self.model.to(torch.device('cuda' if torch.cuda.is_available() else 'cpu')) | |
return self.model | |
except Exception as e: | |
st.error(f"Error loading summarization model: {str(e)}") | |
return None | |
def process(self, text: str, max_length: int = 150, min_length: int = 40): | |
try: | |
inputs = self.tokenizer(text, return_tensors="pt", max_length=1024, truncation=True) | |
inputs = {key: value.to(self.model.device) for key, value in inputs.items()} | |
summary_ids = self.model.generate( | |
inputs["input_ids"], | |
max_length=max_length, | |
min_length=min_length, | |
num_beams=4, | |
length_penalty=2.0 | |
) | |
summary = self.tokenizer.decode(summary_ids[0], skip_special_tokens=True) | |
return summary | |
except Exception as e: | |
st.error(f"Error in summarization: {str(e)}") | |
return None | |