Update src/models/summarization.py
Browse files- src/models/summarization.py +15 -9
src/models/summarization.py
CHANGED
|
@@ -1,8 +1,6 @@
|
|
| 1 |
-
|
| 2 |
-
from transformers import BartTokenizer
|
| 3 |
import torch
|
| 4 |
import streamlit as st
|
| 5 |
-
import pickle
|
| 6 |
|
| 7 |
class Summarizer:
|
| 8 |
def __init__(self):
|
|
@@ -12,18 +10,26 @@ class Summarizer:
|
|
| 12 |
def load_model(self):
|
| 13 |
try:
|
| 14 |
self.tokenizer = BartTokenizer.from_pretrained('facebook/bart-base')
|
| 15 |
-
|
| 16 |
-
|
| 17 |
return self.model
|
| 18 |
except Exception as e:
|
| 19 |
st.error(f"Error loading summarization model: {str(e)}")
|
| 20 |
return None
|
| 21 |
|
| 22 |
-
def process(self, text: str, max_length: int =
|
| 23 |
try:
|
| 24 |
inputs = self.tokenizer(text, return_tensors="pt", max_length=1024, truncation=True)
|
| 25 |
-
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
except Exception as e:
|
| 28 |
st.error(f"Error in summarization: {str(e)}")
|
| 29 |
-
return None
|
|
|
|
| 1 |
+
from transformers import BartTokenizer, BartForConditionalGeneration
|
|
|
|
| 2 |
import torch
|
| 3 |
import streamlit as st
|
|
|
|
| 4 |
|
| 5 |
class Summarizer:
|
| 6 |
def __init__(self):
|
|
|
|
| 10 |
def load_model(self):
|
| 11 |
try:
|
| 12 |
self.tokenizer = BartTokenizer.from_pretrained('facebook/bart-base')
|
| 13 |
+
self.model = torch.load('bart_ami_finetuned.pkl')
|
| 14 |
+
self.model.to(torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
|
| 15 |
return self.model
|
| 16 |
except Exception as e:
|
| 17 |
st.error(f"Error loading summarization model: {str(e)}")
|
| 18 |
return None
|
| 19 |
|
| 20 |
+
def process(self, text: str, max_length: int = 150, min_length: int = 40):
|
| 21 |
try:
|
| 22 |
inputs = self.tokenizer(text, return_tensors="pt", max_length=1024, truncation=True)
|
| 23 |
+
inputs = {key: value.to(self.model.device) for key, value in inputs.items()}
|
| 24 |
+
summary_ids = self.model.generate(
|
| 25 |
+
inputs["input_ids"],
|
| 26 |
+
max_length=max_length,
|
| 27 |
+
min_length=min_length,
|
| 28 |
+
num_beams=4,
|
| 29 |
+
length_penalty=2.0
|
| 30 |
+
)
|
| 31 |
+
summary = self.tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
| 32 |
+
return summary
|
| 33 |
except Exception as e:
|
| 34 |
st.error(f"Error in summarization: {str(e)}")
|
| 35 |
+
return None
|