Update src/models/summarization.py
Browse files- src/models/summarization.py +9 -24
src/models/summarization.py
CHANGED
@@ -1,44 +1,29 @@
|
|
1 |
-
"""
|
2 |
-
Summarization Model Handler
|
3 |
-
Manages the BART model for text summarization.
|
4 |
-
"""
|
5 |
|
6 |
-
from transformers import
|
7 |
import torch
|
8 |
import streamlit as st
|
|
|
9 |
|
10 |
class Summarizer:
|
11 |
def __init__(self):
|
12 |
-
"""Initialize the summarization model."""
|
13 |
self.model = None
|
|
|
14 |
|
15 |
def load_model(self):
|
16 |
-
"""Load the BART summarization model."""
|
17 |
try:
|
18 |
-
self.
|
19 |
-
|
20 |
-
model=
|
21 |
-
device=0 if torch.cuda.is_available() else -1
|
22 |
-
)
|
23 |
return self.model
|
24 |
except Exception as e:
|
25 |
st.error(f"Error loading summarization model: {str(e)}")
|
26 |
return None
|
27 |
|
28 |
def process(self, text: str, max_length: int = 130, min_length: int = 30):
|
29 |
-
"""Process text for summarization.
|
30 |
-
|
31 |
-
Args:
|
32 |
-
text (str): Text to summarize
|
33 |
-
max_length (int): Maximum length of summary
|
34 |
-
min_length (int): Minimum length of summary
|
35 |
-
|
36 |
-
Returns:
|
37 |
-
str: Summarized text
|
38 |
-
"""
|
39 |
try:
|
40 |
-
|
41 |
-
|
|
|
42 |
except Exception as e:
|
43 |
st.error(f"Error in summarization: {str(e)}")
|
44 |
return None
|
|
|
|
|
|
|
|
|
|
|
1 |
|
2 |
+
from transformers import BartTokenizer
|
3 |
import torch
|
4 |
import streamlit as st
|
5 |
+
import pickle
|
6 |
|
7 |
class Summarizer:
|
8 |
def __init__(self):
|
|
|
9 |
self.model = None
|
10 |
+
self.tokenizer = None
|
11 |
|
12 |
def load_model(self):
|
|
|
13 |
try:
|
14 |
+
self.tokenizer = BartTokenizer.from_pretrained('facebook/bart-base')
|
15 |
+
with open('bart_ami_finetuned.pkl', 'rb') as f:
|
16 |
+
self.model = pickle.load(f)
|
|
|
|
|
17 |
return self.model
|
18 |
except Exception as e:
|
19 |
st.error(f"Error loading summarization model: {str(e)}")
|
20 |
return None
|
21 |
|
22 |
def process(self, text: str, max_length: int = 130, min_length: int = 30):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
try:
|
24 |
+
inputs = self.tokenizer(text, return_tensors="pt", max_length=1024, truncation=True)
|
25 |
+
summary_ids = self.model.generate(inputs["input_ids"], max_length=max_length, min_length=min_length)
|
26 |
+
return self.tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
27 |
except Exception as e:
|
28 |
st.error(f"Error in summarization: {str(e)}")
|
29 |
return None
|