from transformers import BartTokenizer, BartForConditionalGeneration import torch import streamlit as st class Summarizer: def __init__(self): self.model = None self.tokenizer = None def load_model(self): try: self.tokenizer = BartTokenizer.from_pretrained('facebook/bart-base') self.model = torch.load('bart_ami_finetuned.pkl') self.model.to(torch.device('cuda' if torch.cuda.is_available() else 'cpu')) return self.model except Exception as e: st.error(f"Error loading summarization model: {str(e)}") return None def process(self, text: str, max_length: int = 150, min_length: int = 40): try: inputs = self.tokenizer(text, return_tensors="pt", max_length=1024, truncation=True) inputs = {key: value.to(self.model.device) for key, value in inputs.items()} summary_ids = self.model.generate( inputs["input_ids"], max_length=max_length, min_length=min_length, num_beams=4, length_penalty=2.0 ) summary = self.tokenizer.decode(summary_ids[0], skip_special_tokens=True) return summary except Exception as e: st.error(f"Error in summarization: {str(e)}") return None