File size: 12,139 Bytes
352d473
c672d1b
5cb8fb6
75c603a
352d473
75c603a
 
 
 
 
 
 
 
 
 
 
 
 
5cb8fb6
efc4ecf
5cb8fb6
75c603a
 
efc4ecf
5cb8fb6
75c603a
 
 
 
 
 
 
 
 
5cb8fb6
75c603a
 
 
 
 
efc4ecf
5cb8fb6
75c603a
 
 
 
 
5cb8fb6
75c603a
 
 
 
 
5cb8fb6
75c603a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5cb8fb6
 
 
 
 
efc4ecf
 
75c603a
 
 
 
 
 
 
 
 
 
 
 
 
 
efc4ecf
75c603a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efc4ecf
75c603a
 
 
 
5cb8fb6
75c603a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5cb8fb6
75c603a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5cb8fb6
75c603a
efc4ecf
 
 
 
 
 
 
 
473251f
35e8298
f73c0d1
75c603a
a05bcb9
75c603a
 
 
 
fa559ec
75c603a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05ce7a2
a05bcb9
f73c0d1
05ce7a2
35e8298
5cb8fb6
 
 
 
75c603a
f73c0d1
75c603a
f73c0d1
35e8298
75c603a
a05bcb9
35e8298
5cb8fb6
35e8298
5cb8fb6
75c603a
 
05ce7a2
35e8298
f73c0d1
a05bcb9
 
 
5cb8fb6
 
 
a05bcb9
05ce7a2
 
a05bcb9
 
75c603a
05ce7a2
f73c0d1
a05bcb9
f73c0d1
75c603a
352d473
35e8298
5cb8fb6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import streamlit as st
import json
from typing import Dict, List, Any
import re

def format_project_response(project: dict, include_status: bool = True) -> str:
    """Format a project description with proper status handling"""
    response = [f"• {project['name']}:"]
    response.append(f"  - {project['description']}")
    
    if 'skills_used' in project:
        response.append(f"  - Technologies: {', '.join(project['skills_used'])}")
    
    if include_status and 'status' in project:
        if 'development' in project['status'].lower() or 'progress' in project['status'].lower():
            response.append(f"  - Currently {project['status']}")
            if 'confidentiality_note' in project:
                response.append(f"  - Note: {project['confidentiality_note']}")
    
    return '\n'.join(response)

def analyze_job_requirements(text: str, knowledge_base: dict) -> Dict[str, List[str]]:
    """Analyze job requirements and match with skills"""
    text_lower = text.lower()
    
    # Extract skills from knowledge base
    my_skills = {
        'technical': [skill.lower() for skill in knowledge_base['skills']['technical_skills']['machine_learning']['core'] +
                     knowledge_base['skills']['technical_skills']['programming']['primary'] +
                     knowledge_base['skills']['technical_skills']['data']['databases']],
        'tools': [tool.lower() for tool in knowledge_base['skills']['technical_skills']['programming']['tools'] +
                 knowledge_base['skills']['technical_skills']['deployment']['web']],
        'soft_skills': [skill['skill'].lower() for skill in knowledge_base['skills']['soft_skills']]
    }
    
    # Find matching skills in job description
    matches = {
        'technical_matches': [skill for skill in my_skills['technical'] if skill in text_lower],
        'tool_matches': [tool for tool in my_skills['tools'] if tool in text_lower],
        'soft_skill_matches': [skill for skill in my_skills['soft_skills'] if skill in text_lower]
    }
    
    return matches

def find_relevant_projects(requirements: str, projects: List[dict]) -> List[dict]:
    """Find projects relevant to job requirements"""
    req_lower = requirements.lower()
    relevant_projects = []
    
    for project in projects:
        # Check if project skills or description match requirements
        if any(skill.lower() in req_lower for skill in project['skills_used']) or \
           any(word in project['description'].lower() for word in req_lower.split()):
            relevant_projects.append(project)
    
    return relevant_projects[:2]  # Return top 2 most relevant projects

def add_relevant_links(response: str, query: str, knowledge_base: dict) -> str:
    """Add relevant links based on query context"""
    query_lower = query.lower()
    links = []
    
    # Add portfolio link for project-related queries
    if any(word in query_lower for word in ['project', 'portfolio', 'work']):
        links.append(f"\nView my complete portfolio: {knowledge_base['personal_details']['online_presence']['portfolio']}")
    
    # Add blog link for technical queries
    if any(word in query_lower for word in ['machine learning', 'ml', 'algorithm', 'knn']):
        for post in knowledge_base['personal_details']['online_presence']['blog_posts']:
            if 'link' in post and any(word in post['title'].lower() for word in query_lower.split()):
                links.append(f"\nRelated blog post: {post['link']}")
                break
    
    # Add LinkedIn for professional background queries
    if any(word in query_lower for word in ['background', 'experience', 'work']):
        links.append(f"\nConnect with me: {knowledge_base['personal_details']['online_presence']['linkedin']}")
    
    if links:
        response += '\n\n' + '\n'.join(links)
    
    return response

def generate_response(query: str, knowledge_base: dict) -> str:
    """Generate enhanced responses using the knowledge base"""
    query_lower = query.lower()
    
    # Handle project listing requests
    if any(word in query_lower for word in ['list', 'project', 'portfolio', 'built', 'created', 'developed']):
        response_parts = ["Here are my key projects:"]
        
        # Major Projects (under development)
        response_parts.append("\nMajor Projects (In Development):")
        for project in knowledge_base['projects']['major_projects']:
            response_parts.append(format_project_response(project))
            
        # Algorithm Implementation Projects (completed)
        response_parts.append("\nCompleted Algorithm Implementation Projects:")
        for project in knowledge_base['projects']['algorithm_practice_projects']:
            response_parts.append(format_project_response(project, include_status=False))
        
        response = '\n'.join(response_parts)
        return add_relevant_links(response, query, knowledge_base)
    
    # Handle job description analysis
    elif len(query.split()) > 20 and any(phrase in query_lower for phrase in 
        ['requirements', 'qualifications', 'looking for', 'job description']):
        
        skill_matches = analyze_job_requirements(query, knowledge_base)
        relevant_projects = find_relevant_projects(query, knowledge_base['projects']['major_projects'])
        
        response_parts = ["Based on the job requirements, here's how my profile aligns:"]
        
        # Technical Skills Match
        if skill_matches['technical_matches']:
            response_parts.append("\n• Technical Skills Match:")
            for skill in skill_matches['technical_matches']:
                response_parts.append(f"  - Strong proficiency in {skill}")
        
        # Tools and Technologies
        if skill_matches['tool_matches']:
            response_parts.append("\n• Relevant Tools/Technologies:")
            for tool in skill_matches['tool_matches']:
                response_parts.append(f"  - Experience with {tool}")
        
        # Relevant Projects
        if relevant_projects:
            response_parts.append("\n• Relevant Project Experience:")
            for project in relevant_projects:
                response_parts.append(format_project_response(project))
        
        # Education and Background
        response_parts.append("\n• Education and Background:")
        response_parts.append("  - Currently pursuing advanced AI/ML education in Canada")
        response_parts.append("  - Unique background combining commerce and technology")
        response_parts.append("  - Strong foundation in practical ML implementation")
        
        response = '\n'.join(response_parts)
        return add_relevant_links(response, query, knowledge_base)
    
    # Handle background/story queries
    elif any(word in query_lower for word in ['background', 'journey', 'story', 'transition']):
        transition_story = next((qa['answer'] for qa in knowledge_base['frequently_asked_questions'] 
                               if 'transition' in qa['question'].lower()), '')
        
        response_parts = [
            "My Journey from Commerce to ML/AI:",
            "• Education Background:",
            f"  - {knowledge_base['education']['undergraduate']['course_name']} from {knowledge_base['education']['undergraduate']['institution']}",
            "• Career Transition:",
            "  - Started as a Programmer Trainee at Cognizant",
            f"  - {transition_story[:200]}...",
            "• Current Path:",
            "  - Pursuing AI/ML education in Canada",
            "  - Building practical ML projects",
            "• Future Goals:",
            "  - Aiming to become an ML Engineer in Canada",
            "  - Focus on innovative AI solutions"
        ]
        
        response = '\n'.join(response_parts)
        return add_relevant_links(response, query, knowledge_base)
    
    # Handle skill-specific queries
    elif any(word in query_lower for word in ['skill', 'know', 'technology', 'stack']):
        tech_skills = knowledge_base['skills']['technical_skills']
        
        response_parts = ["My Technical Expertise:"]
        
        # ML/AI Skills
        response_parts.append("\n• Machine Learning & AI:")
        response_parts.append(f"  - Core: {', '.join(tech_skills['machine_learning']['core'])}")
        response_parts.append(f"  - Frameworks: {', '.join(tech_skills['machine_learning']['frameworks'])}")
        
        # Programming & Tools
        response_parts.append("\n• Programming & Development:")
        response_parts.append(f"  - Languages: {', '.join(tech_skills['programming']['primary'])}")
        response_parts.append(f"  - Tools: {', '.join(tech_skills['programming']['tools'])}")
        
        # Data & Analytics
        response_parts.append("\n• Data & Analytics:")
        response_parts.append(f"  - Databases: {', '.join(tech_skills['data']['databases'])}")
        response_parts.append(f"  - Visualization: {', '.join(tech_skills['data']['visualization'])}")
        
        response = '\n'.join(response_parts)
        return add_relevant_links(response, query, knowledge_base)
    
    # Handle default/unknown queries
    return (f"I'm {knowledge_base['personal_details']['full_name']}, "
            f"{knowledge_base['personal_details']['professional_summary']}\n\n"
            "You can ask me about:\n"
            "• My projects and portfolio\n"
            "• My journey from commerce to ML/AI\n"
            "• My technical skills and experience\n"
            "• My fit for ML/AI roles\n"
            "Or paste a job description to see how my profile matches!")

def main():
    st.title("💬 Chat with Manyue's Portfolio")
    
    # Initialize session state
    if "messages" not in st.session_state:
        st.session_state.messages = []
    if "knowledge_base" not in st.session_state:
        try:
            with open('knowledge_base.json', 'r', encoding='utf-8') as f:
                st.session_state.knowledge_base = json.load(f)
        except FileNotFoundError:
            st.error("Knowledge base file not found.")
            return
    
    # Display welcome message
    if "displayed_welcome" not in st.session_state:
        st.write("""
        Hi! I'm Manyue's AI assistant. I can tell you about:
        - My journey from commerce to ML/AI
        - My technical skills and projects
        - My fit for ML/AI roles
        - You can also paste job descriptions to see how my profile matches!
        """)
        st.session_state.displayed_welcome = True

    # Create two columns
    col1, col2 = st.columns([3, 1])

    with col1:
        # Display chat messages
        for message in st.session_state.messages:
            with st.chat_message(message["role"]):
                st.markdown(message["content"])
        
        # Chat input
        if prompt := st.chat_input("Ask me anything or paste a job description..."):
            # Add user message
            st.session_state.messages.append({"role": "user", "content": prompt})
            
            # Generate and display response
            with st.chat_message("assistant"):
                response = generate_response(prompt, st.session_state.knowledge_base)
                st.markdown(response)
                st.session_state.messages.append({"role": "assistant", "content": response})
            
            st.rerun()

    with col2:
        st.subheader("Quick Questions")
        example_questions = [
            "Tell me about your ML projects",
            "What are your technical skills?",
            "Why should we hire you as an ML Engineer?",
            "What's your journey into ML?",
            "Paste a job description to see how I match!"
        ]

        for question in example_questions:
            if st.button(question):
                st.session_state.messages.append({"role": "user", "content": question})
                st.rerun()

        st.markdown("---")
        if st.button("Clear Chat"):
            st.session_state.messages = []
            st.rerun()

if __name__ == "__main__":
    main()