File size: 11,795 Bytes
113e1ee 6b4f4ab b180e8e 6b4f4ab b180e8e 6b4f4ab b180e8e 6b4f4ab e8c275d 6b4f4ab b180e8e 6b4f4ab 5ae1545 6b4f4ab b180e8e 6b4f4ab b180e8e 6b4f4ab b180e8e 6b4f4ab 5ae1545 6b4f4ab b180e8e 6b4f4ab b180e8e 6b4f4ab 6024488 6b4f4ab 184cc4e 6024488 5ae1545 b180e8e 5ae1545 b180e8e 5ae1545 6024488 b180e8e e8c275d b180e8e 5ae1545 e8c275d b180e8e 5ae1545 b180e8e 5ae1545 b180e8e 6024488 5ae1545 b180e8e 5ae1545 b180e8e 5ae1545 b180e8e 5ae1545 b180e8e 5ae1545 b180e8e 6b4f4ab e8c275d 6b4f4ab b180e8e 184cc4e 6b4f4ab 5ae1545 d47dd8d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 |
import torch
from transformers import CLIPModel, CLIPProcessor, AutoTokenizer, MarianMTModel, MarianTokenizer
from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler
import numpy as np
from typing import List, Tuple, Optional, Dict, Any
import gradio as gr
from pathlib import Path
import json
import logging
from dataclasses import dataclass
import gc
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
@dataclass
class GenerationConfig:
num_images: int = 1
num_inference_steps: int = 50
guidance_scale: float = 7.5
seed: Optional[int] = None
class ModelCache:
def __init__(self, cache_dir: Path):
self.cache_dir = cache_dir
self.cache_dir.mkdir(parents=True, exist_ok=True)
def load_model(self, model_id: str, load_func: callable, cache_name: str) -> Any:
try:
logger.info(f"Loading {cache_name}")
return load_func(model_id)
except Exception as e:
logger.error(f"Error loading model {cache_name}: {str(e)}")
raise
class EnhancedBanglaSDGenerator:
def __init__(
self,
banglaclip_weights_path: str,
cache_dir: str,
device: Optional[torch.device] = None
):
self.device = device or torch.device("cuda" if torch.cuda.is_available() else "cpu")
logger.info(f"Using device: {self.device}")
self.cache = ModelCache(Path(cache_dir))
self._initialize_models(banglaclip_weights_path)
self._load_context_data()
def _initialize_models(self, banglaclip_weights_path: str):
try:
# Initialize translation models
self.bn2en_model_name = "Helsinki-NLP/opus-mt-bn-en"
self.translator = self.cache.load_model(
self.bn2en_model_name,
MarianMTModel.from_pretrained,
"translator"
).to(self.device)
self.trans_tokenizer = MarianTokenizer.from_pretrained(self.bn2en_model_name)
# Initialize CLIP models
self.clip_model_name = "openai/clip-vit-base-patch32"
self.bangla_text_model = "csebuetnlp/banglabert"
self.banglaclip_model = self._load_banglaclip_model(banglaclip_weights_path)
self.processor = CLIPProcessor.from_pretrained(self.clip_model_name)
self.tokenizer = AutoTokenizer.from_pretrained(self.bangla_text_model)
# Initialize Stable Diffusion
self._initialize_stable_diffusion()
except Exception as e:
logger.error(f"Error initializing models: {str(e)}")
raise RuntimeError(f"Failed to initialize models: {str(e)}")
def _initialize_stable_diffusion(self):
"""Initialize Stable Diffusion pipeline with optimized settings."""
self.pipe = self.cache.load_model(
"runwayml/stable-diffusion-v1-5",
lambda model_id: StableDiffusionPipeline.from_pretrained(
model_id,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
safety_checker=None
),
"stable_diffusion"
)
self.pipe.scheduler = DPMSolverMultistepScheduler.from_config(
self.pipe.scheduler.config,
use_karras_sigmas=True,
algorithm_type="dpmsolver++"
)
self.pipe = self.pipe.to(self.device)
# Memory optimization
self.pipe.enable_attention_slicing()
if torch.cuda.is_available():
self.pipe.enable_sequential_cpu_offload()
def _load_banglaclip_model(self, weights_path: str) -> CLIPModel:
try:
if not Path(weights_path).exists():
raise FileNotFoundError(f"BanglaCLIP weights not found at {weights_path}")
clip_model = CLIPModel.from_pretrained(self.clip_model_name)
state_dict = torch.load(weights_path, map_location=self.device)
cleaned_state_dict = {
k.replace('module.', '').replace('clip.', ''): v
for k, v in state_dict.items()
if k.replace('module.', '').replace('clip.', '').startswith(('text_model.', 'vision_model.'))
}
clip_model.load_state_dict(cleaned_state_dict, strict=False)
return clip_model.to(self.device)
except Exception as e:
logger.error(f"Failed to load BanglaCLIP model: {str(e)}")
raise
def _load_context_data(self):
"""Load location and scene context data."""
self.location_contexts = {
'কক্সবাজার': 'Cox\'s Bazar beach, longest natural sea beach in the world, sandy beach',
'সেন্টমার্টিন': 'Saint Martin\'s Island, coral island, tropical paradise',
'সুন্দরবন': 'Sundarbans mangrove forest, Bengal tigers, riverine forest'
}
self.scene_contexts = {
'সৈকত': 'beach, seaside, waves, sandy shore, ocean view',
'সমুদ্র': 'ocean, sea waves, deep blue water, horizon',
'পাহাড়': 'mountains, hills, valleys, scenic landscape'
}
def _translate_text(self, bangla_text: str) -> str:
"""Translate Bangla text to English."""
inputs = self.trans_tokenizer(bangla_text, return_tensors="pt", padding=True)
inputs = {k: v.to(self.device) for k, v in inputs.items()}
with torch.no_grad():
outputs = self.translator.generate(**inputs)
translated = self.trans_tokenizer.decode(outputs[0], skip_special_tokens=True)
return translated
def _get_text_embedding(self, text: str):
"""Get text embedding from BanglaCLIP model."""
inputs = self.tokenizer(text, return_tensors="pt", padding=True, truncation=True)
inputs = {k: v.to(self.device) for k, v in inputs.items()}
with torch.no_grad():
outputs = self.banglaclip_model.get_text_features(**inputs)
return outputs
def generate_image(
self,
bangla_text: str,
config: Optional[GenerationConfig] = None
) -> Tuple[List[Any], str]:
if not bangla_text.strip():
raise ValueError("Empty input text")
config = config or GenerationConfig()
try:
if config.seed is not None:
torch.manual_seed(config.seed)
enhanced_prompt = self._enhance_prompt(bangla_text)
negative_prompt = self._get_negative_prompt()
with torch.autocast(self.device.type):
result = self.pipe(
prompt=enhanced_prompt,
negative_prompt=negative_prompt,
num_images_per_prompt=config.num_images,
num_inference_steps=config.num_inference_steps,
guidance_scale=config.guidance_scale
)
return result.images, enhanced_prompt
except Exception as e:
logger.error(f"Error during image generation: {str(e)}")
raise
def _enhance_prompt(self, bangla_text: str) -> str:
"""Enhance prompt with context and style information."""
translated_text = self._translate_text(bangla_text)
# Gather contexts
contexts = []
contexts.extend(context for loc, context in self.location_contexts.items() if loc in bangla_text)
contexts.extend(context for scene, context in self.scene_contexts.items() if scene in bangla_text)
# Add photo style
photo_style = [
"professional photography",
"high resolution",
"4k",
"detailed",
"realistic",
"beautiful composition"
]
# Combine all parts
all_parts = [translated_text] + contexts + photo_style
return ", ".join(dict.fromkeys(all_parts))
def _get_negative_prompt(self) -> str:
return (
"blurry, low quality, pixelated, cartoon, anime, illustration, "
"painting, drawing, artificial, fake, oversaturated, undersaturated"
)
def cleanup(self):
"""Clean up GPU memory"""
if hasattr(self, 'pipe'):
del self.pipe
if hasattr(self, 'banglaclip_model'):
del self.banglaclip_model
if hasattr(self, 'translator'):
del self.translator
torch.cuda.empty_cache()
gc.collect()
def create_gradio_interface():
"""Create and configure the Gradio interface."""
cache_dir = Path("model_cache")
generator = None
def initialize_generator():
nonlocal generator
if generator is None:
generator = EnhancedBanglaSDGenerator(
banglaclip_weights_path="banglaclip_model_epoch_10_quantized.pth",
cache_dir=str(cache_dir)
)
return generator
def cleanup_generator():
nonlocal generator
if generator is not None:
generator.cleanup()
generator = None
def generate_images(text: str, num_images: int, steps: int, guidance_scale: float, seed: Optional[int]) -> Tuple[List[Any], str]:
if not text.strip():
return None, "দয়া করে কিছু টেক্সট লিখুন"
try:
gen = initialize_generator()
config = GenerationConfig(
num_images=int(num_images),
num_inference_steps=int(steps),
guidance_scale=float(guidance_scale),
seed=int(seed) if seed else None
)
images, prompt = gen.generate_image(text, config)
cleanup_generator()
return images, prompt
except Exception as e:
logger.error(f"Error in Gradio interface: {str(e)}")
cleanup_generator()
return None, f"ছবি তৈরি ব্যর্থ হয়েছে: {str(e)}"
# Create Gradio interface
demo = gr.Interface(
fn=generate_images,
inputs=[
gr.Textbox(
label="বাংলা টেক্সট লিখুন",
placeholder="যেকোনো বাংলা টেক্সট লিখুন...",
lines=3
),
gr.Slider(
minimum=1,
maximum=4,
step=1,
value=1,
label="ছবির সংখ্যা"
),
gr.Slider(
minimum=20,
maximum=100,
step=1,
value=50,
label="স্টেপস"
),
gr.Slider(
minimum=1.0,
maximum=20.0,
step=0.5,
value=7.5,
label="গাইডেন্স স্কেল"
),
gr.Number(
label="সীড (ঐচ্ছিক)",
precision=0
)
],
outputs=[
gr.Gallery(label="তৈরি করা ছবি"),
gr.Textbox(label="ব্যবহৃত প্রম্পট")
],
title="বাংলা টেক্সট থেকে ছবি তৈরি",
description="যেকোনো বাংলা টেক্সট দিয়ে উচ্চমানের ছবি তৈরি করুন"
)
return demo
if __name__ == "__main__":
demo = create_gradio_interface()
# Fixed queue configuration for newer Gradio versions
demo.queue().launch(share=True) |