Update app.py
Browse files
app.py
CHANGED
@@ -1,13 +1,17 @@
|
|
|
|
|
|
|
|
1 |
import torch
|
2 |
-
import os
|
3 |
-
import requests
|
4 |
-
import logging
|
5 |
-
from pathlib import Path
|
6 |
from transformers import CLIPModel, CLIPProcessor, AutoTokenizer, MarianMTModel, MarianTokenizer
|
7 |
from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler
|
|
|
|
|
8 |
import gradio as gr
|
9 |
-
from
|
|
|
|
|
10 |
from dataclasses import dataclass
|
|
|
11 |
|
12 |
# Configure logging
|
13 |
logging.basicConfig(
|
@@ -16,30 +20,6 @@ logging.basicConfig(
|
|
16 |
)
|
17 |
logger = logging.getLogger(__name__)
|
18 |
|
19 |
-
def download_model(model_url: str, model_path: str):
|
20 |
-
"""Download large model file with progress tracking."""
|
21 |
-
if not os.path.exists(model_path):
|
22 |
-
try:
|
23 |
-
logger.info(f"Downloading model from {model_url}...")
|
24 |
-
response = requests.get(model_url, stream=True)
|
25 |
-
response.raise_for_status()
|
26 |
-
|
27 |
-
total_size = int(response.headers.get('content-length', 0))
|
28 |
-
block_size = 1024 * 1024 # 1 MB chunks
|
29 |
-
downloaded_size = 0
|
30 |
-
|
31 |
-
with open(model_path, 'wb') as f:
|
32 |
-
for data in response.iter_content(block_size):
|
33 |
-
f.write(data)
|
34 |
-
downloaded_size += len(data)
|
35 |
-
progress = (downloaded_size / total_size) * 100 if total_size > 0 else 0
|
36 |
-
logger.info(f"Download progress: {progress:.2f}%")
|
37 |
-
|
38 |
-
logger.info("Model download complete.")
|
39 |
-
except Exception as e:
|
40 |
-
logger.error(f"Model download failed: {e}")
|
41 |
-
raise
|
42 |
-
|
43 |
@dataclass
|
44 |
class GenerationConfig:
|
45 |
num_images: int = 1
|
@@ -63,6 +43,7 @@ class ModelCache:
|
|
63 |
class EnhancedBanglaSDGenerator:
|
64 |
def __init__(
|
65 |
self,
|
|
|
66 |
cache_dir: str,
|
67 |
device: Optional[torch.device] = None
|
68 |
):
|
@@ -70,21 +51,12 @@ class EnhancedBanglaSDGenerator:
|
|
70 |
logger.info(f"Using device: {self.device}")
|
71 |
|
72 |
self.cache = ModelCache(Path(cache_dir))
|
73 |
-
self._initialize_models()
|
74 |
self._load_context_data()
|
75 |
|
76 |
-
def
|
77 |
-
"""Load BanglaCLIP model from Hugging Face directly"""
|
78 |
-
try:
|
79 |
-
model = CLIPModel.from_pretrained("Mansuba/BanglaCLIP13")
|
80 |
-
return model.to(self.device)
|
81 |
-
except Exception as e:
|
82 |
-
logger.error(f"Failed to load BanglaCLIP model: {str(e)}")
|
83 |
-
raise
|
84 |
-
|
85 |
-
def _initialize_models(self):
|
86 |
try:
|
87 |
-
#
|
88 |
self.bn2en_model_name = "Helsinki-NLP/opus-mt-bn-en"
|
89 |
self.translator = self.cache.load_model(
|
90 |
self.bn2en_model_name,
|
@@ -93,17 +65,14 @@ class EnhancedBanglaSDGenerator:
|
|
93 |
).to(self.device)
|
94 |
self.trans_tokenizer = MarianTokenizer.from_pretrained(self.bn2en_model_name)
|
95 |
|
96 |
-
# CLIP models
|
97 |
self.clip_model_name = "openai/clip-vit-base-patch32"
|
98 |
self.bangla_text_model = "csebuetnlp/banglabert"
|
99 |
-
|
100 |
-
# Load BanglaCLIP model directly from Hugging Face
|
101 |
-
self.banglaclip_model = self._load_banglaclip_model()
|
102 |
-
|
103 |
self.processor = CLIPProcessor.from_pretrained(self.clip_model_name)
|
104 |
self.tokenizer = AutoTokenizer.from_pretrained(self.bangla_text_model)
|
105 |
|
106 |
-
# Stable Diffusion
|
107 |
self._initialize_stable_diffusion()
|
108 |
|
109 |
except Exception as e:
|
@@ -111,8 +80,156 @@ class EnhancedBanglaSDGenerator:
|
|
111 |
raise RuntimeError(f"Failed to initialize models: {str(e)}")
|
112 |
|
113 |
def _initialize_stable_diffusion(self):
|
114 |
-
"""
|
115 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
|
117 |
def create_gradio_interface():
|
118 |
"""Create and configure the Gradio interface."""
|
@@ -123,6 +240,7 @@ def create_gradio_interface():
|
|
123 |
nonlocal generator
|
124 |
if generator is None:
|
125 |
generator = EnhancedBanglaSDGenerator(
|
|
|
126 |
cache_dir=str(cache_dir)
|
127 |
)
|
128 |
return generator
|
@@ -155,20 +273,53 @@ def create_gradio_interface():
|
|
155 |
cleanup_generator()
|
156 |
return None, f"ছবি তৈরি ব্যর্থ হয়েছে: {str(e)}"
|
157 |
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
|
170 |
return demo
|
171 |
|
172 |
if __name__ == "__main__":
|
173 |
demo = create_gradio_interface()
|
174 |
-
|
|
|
|
|
|
1 |
+
!wget -O banglaclip_model_epoch_10.pth https://huggingface.co/Mansuba/BanglaCLIP13/resolve/main/banglaclip_model_epoch_10.pth
|
2 |
+
|
3 |
+
|
4 |
import torch
|
|
|
|
|
|
|
|
|
5 |
from transformers import CLIPModel, CLIPProcessor, AutoTokenizer, MarianMTModel, MarianTokenizer
|
6 |
from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler
|
7 |
+
import numpy as np
|
8 |
+
from typing import List, Tuple, Optional, Dict, Any
|
9 |
import gradio as gr
|
10 |
+
from pathlib import Path
|
11 |
+
import json
|
12 |
+
import logging
|
13 |
from dataclasses import dataclass
|
14 |
+
import gc
|
15 |
|
16 |
# Configure logging
|
17 |
logging.basicConfig(
|
|
|
20 |
)
|
21 |
logger = logging.getLogger(__name__)
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
@dataclass
|
24 |
class GenerationConfig:
|
25 |
num_images: int = 1
|
|
|
43 |
class EnhancedBanglaSDGenerator:
|
44 |
def __init__(
|
45 |
self,
|
46 |
+
banglaclip_weights_path: str,
|
47 |
cache_dir: str,
|
48 |
device: Optional[torch.device] = None
|
49 |
):
|
|
|
51 |
logger.info(f"Using device: {self.device}")
|
52 |
|
53 |
self.cache = ModelCache(Path(cache_dir))
|
54 |
+
self._initialize_models(banglaclip_weights_path)
|
55 |
self._load_context_data()
|
56 |
|
57 |
+
def _initialize_models(self, banglaclip_weights_path: str):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
try:
|
59 |
+
# Initialize translation models
|
60 |
self.bn2en_model_name = "Helsinki-NLP/opus-mt-bn-en"
|
61 |
self.translator = self.cache.load_model(
|
62 |
self.bn2en_model_name,
|
|
|
65 |
).to(self.device)
|
66 |
self.trans_tokenizer = MarianTokenizer.from_pretrained(self.bn2en_model_name)
|
67 |
|
68 |
+
# Initialize CLIP models
|
69 |
self.clip_model_name = "openai/clip-vit-base-patch32"
|
70 |
self.bangla_text_model = "csebuetnlp/banglabert"
|
71 |
+
self.banglaclip_model = self._load_banglaclip_model(banglaclip_weights_path)
|
|
|
|
|
|
|
72 |
self.processor = CLIPProcessor.from_pretrained(self.clip_model_name)
|
73 |
self.tokenizer = AutoTokenizer.from_pretrained(self.bangla_text_model)
|
74 |
|
75 |
+
# Initialize Stable Diffusion
|
76 |
self._initialize_stable_diffusion()
|
77 |
|
78 |
except Exception as e:
|
|
|
80 |
raise RuntimeError(f"Failed to initialize models: {str(e)}")
|
81 |
|
82 |
def _initialize_stable_diffusion(self):
|
83 |
+
"""Initialize Stable Diffusion pipeline with optimized settings."""
|
84 |
+
self.pipe = self.cache.load_model(
|
85 |
+
"runwayml/stable-diffusion-v1-5",
|
86 |
+
lambda model_id: StableDiffusionPipeline.from_pretrained(
|
87 |
+
model_id,
|
88 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
89 |
+
safety_checker=None
|
90 |
+
),
|
91 |
+
"stable_diffusion"
|
92 |
+
)
|
93 |
+
|
94 |
+
self.pipe.scheduler = DPMSolverMultistepScheduler.from_config(
|
95 |
+
self.pipe.scheduler.config,
|
96 |
+
use_karras_sigmas=True,
|
97 |
+
algorithm_type="dpmsolver++"
|
98 |
+
)
|
99 |
+
self.pipe = self.pipe.to(self.device)
|
100 |
+
|
101 |
+
# Memory optimization
|
102 |
+
self.pipe.enable_attention_slicing()
|
103 |
+
if torch.cuda.is_available():
|
104 |
+
self.pipe.enable_sequential_cpu_offload()
|
105 |
+
|
106 |
+
def _load_banglaclip_model(self, weights_path: str) -> CLIPModel:
|
107 |
+
try:
|
108 |
+
if not Path(weights_path).exists():
|
109 |
+
raise FileNotFoundError(f"BanglaCLIP weights not found at {weights_path}")
|
110 |
+
|
111 |
+
clip_model = CLIPModel.from_pretrained(self.clip_model_name)
|
112 |
+
state_dict = torch.load(weights_path, map_location=self.device)
|
113 |
+
|
114 |
+
cleaned_state_dict = {
|
115 |
+
k.replace('module.', '').replace('clip.', ''): v
|
116 |
+
for k, v in state_dict.items()
|
117 |
+
if k.replace('module.', '').replace('clip.', '').startswith(('text_model.', 'vision_model.'))
|
118 |
+
}
|
119 |
+
|
120 |
+
clip_model.load_state_dict(cleaned_state_dict, strict=False)
|
121 |
+
return clip_model.to(self.device)
|
122 |
+
|
123 |
+
except Exception as e:
|
124 |
+
logger.error(f"Failed to load BanglaCLIP model: {str(e)}")
|
125 |
+
raise
|
126 |
+
|
127 |
+
def _load_context_data(self):
|
128 |
+
"""Load location and scene context data."""
|
129 |
+
self.location_contexts = {
|
130 |
+
'কক্সবাজার': 'Cox\'s Bazar beach, longest natural sea beach in the world, sandy beach',
|
131 |
+
'সেন্টমার্টিন': 'Saint Martin\'s Island, coral island, tropical paradise',
|
132 |
+
'সুন্দরবন': 'Sundarbans mangrove forest, Bengal tigers, riverine forest'
|
133 |
+
}
|
134 |
+
|
135 |
+
self.scene_contexts = {
|
136 |
+
'সৈকত': 'beach, seaside, waves, sandy shore, ocean view',
|
137 |
+
'সমুদ্র': 'ocean, sea waves, deep blue water, horizon',
|
138 |
+
'পাহাড়': 'mountains, hills, valleys, scenic landscape'
|
139 |
+
}
|
140 |
+
|
141 |
+
def _translate_text(self, bangla_text: str) -> str:
|
142 |
+
"""Translate Bangla text to English."""
|
143 |
+
inputs = self.trans_tokenizer(bangla_text, return_tensors="pt", padding=True)
|
144 |
+
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
145 |
+
|
146 |
+
with torch.no_grad():
|
147 |
+
outputs = self.translator.generate(**inputs)
|
148 |
+
|
149 |
+
translated = self.trans_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
150 |
+
return translated
|
151 |
+
|
152 |
+
def _get_text_embedding(self, text: str):
|
153 |
+
"""Get text embedding from BanglaCLIP model."""
|
154 |
+
inputs = self.tokenizer(text, return_tensors="pt", padding=True, truncation=True)
|
155 |
+
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
156 |
+
|
157 |
+
with torch.no_grad():
|
158 |
+
outputs = self.banglaclip_model.get_text_features(**inputs)
|
159 |
+
|
160 |
+
return outputs
|
161 |
+
|
162 |
+
def generate_image(
|
163 |
+
self,
|
164 |
+
bangla_text: str,
|
165 |
+
config: Optional[GenerationConfig] = None
|
166 |
+
) -> Tuple[List[Any], str]:
|
167 |
+
if not bangla_text.strip():
|
168 |
+
raise ValueError("Empty input text")
|
169 |
+
|
170 |
+
config = config or GenerationConfig()
|
171 |
+
|
172 |
+
try:
|
173 |
+
if config.seed is not None:
|
174 |
+
torch.manual_seed(config.seed)
|
175 |
+
|
176 |
+
enhanced_prompt = self._enhance_prompt(bangla_text)
|
177 |
+
negative_prompt = self._get_negative_prompt()
|
178 |
+
|
179 |
+
with torch.autocast(self.device.type):
|
180 |
+
result = self.pipe(
|
181 |
+
prompt=enhanced_prompt,
|
182 |
+
negative_prompt=negative_prompt,
|
183 |
+
num_images_per_prompt=config.num_images,
|
184 |
+
num_inference_steps=config.num_inference_steps,
|
185 |
+
guidance_scale=config.guidance_scale
|
186 |
+
)
|
187 |
+
|
188 |
+
return result.images, enhanced_prompt
|
189 |
+
|
190 |
+
except Exception as e:
|
191 |
+
logger.error(f"Error during image generation: {str(e)}")
|
192 |
+
raise
|
193 |
+
|
194 |
+
def _enhance_prompt(self, bangla_text: str) -> str:
|
195 |
+
"""Enhance prompt with context and style information."""
|
196 |
+
translated_text = self._translate_text(bangla_text)
|
197 |
+
|
198 |
+
# Gather contexts
|
199 |
+
contexts = []
|
200 |
+
contexts.extend(context for loc, context in self.location_contexts.items() if loc in bangla_text)
|
201 |
+
contexts.extend(context for scene, context in self.scene_contexts.items() if scene in bangla_text)
|
202 |
+
|
203 |
+
# Add photo style
|
204 |
+
photo_style = [
|
205 |
+
"professional photography",
|
206 |
+
"high resolution",
|
207 |
+
"4k",
|
208 |
+
"detailed",
|
209 |
+
"realistic",
|
210 |
+
"beautiful composition"
|
211 |
+
]
|
212 |
+
|
213 |
+
# Combine all parts
|
214 |
+
all_parts = [translated_text] + contexts + photo_style
|
215 |
+
return ", ".join(dict.fromkeys(all_parts))
|
216 |
+
|
217 |
+
def _get_negative_prompt(self) -> str:
|
218 |
+
return (
|
219 |
+
"blurry, low quality, pixelated, cartoon, anime, illustration, "
|
220 |
+
"painting, drawing, artificial, fake, oversaturated, undersaturated"
|
221 |
+
)
|
222 |
+
|
223 |
+
def cleanup(self):
|
224 |
+
"""Clean up GPU memory"""
|
225 |
+
if hasattr(self, 'pipe'):
|
226 |
+
del self.pipe
|
227 |
+
if hasattr(self, 'banglaclip_model'):
|
228 |
+
del self.banglaclip_model
|
229 |
+
if hasattr(self, 'translator'):
|
230 |
+
del self.translator
|
231 |
+
torch.cuda.empty_cache()
|
232 |
+
gc.collect()
|
233 |
|
234 |
def create_gradio_interface():
|
235 |
"""Create and configure the Gradio interface."""
|
|
|
240 |
nonlocal generator
|
241 |
if generator is None:
|
242 |
generator = EnhancedBanglaSDGenerator(
|
243 |
+
banglaclip_weights_path="banglaclip_model_epoch_10.pth",
|
244 |
cache_dir=str(cache_dir)
|
245 |
)
|
246 |
return generator
|
|
|
273 |
cleanup_generator()
|
274 |
return None, f"ছবি তৈরি ব্যর্থ হয়েছে: {str(e)}"
|
275 |
|
276 |
+
# Create Gradio interface
|
277 |
+
demo = gr.Interface(
|
278 |
+
fn=generate_images,
|
279 |
+
inputs=[
|
280 |
+
gr.Textbox(
|
281 |
+
label="বাংলা টেক্সট লিখুন",
|
282 |
+
placeholder="যেকোনো বাংলা টেক্সট লিখুন...",
|
283 |
+
lines=3
|
284 |
+
),
|
285 |
+
gr.Slider(
|
286 |
+
minimum=1,
|
287 |
+
maximum=4,
|
288 |
+
step=1,
|
289 |
+
value=1,
|
290 |
+
label="ছবির সংখ্যা"
|
291 |
+
),
|
292 |
+
gr.Slider(
|
293 |
+
minimum=20,
|
294 |
+
maximum=100,
|
295 |
+
step=1,
|
296 |
+
value=50,
|
297 |
+
label="স্টেপস"
|
298 |
+
),
|
299 |
+
gr.Slider(
|
300 |
+
minimum=1.0,
|
301 |
+
maximum=20.0,
|
302 |
+
step=0.5,
|
303 |
+
value=7.5,
|
304 |
+
label="গাইডেন্স স্কেল"
|
305 |
+
),
|
306 |
+
gr.Number(
|
307 |
+
label="সীড (ঐচ্ছিক)",
|
308 |
+
precision=0
|
309 |
+
)
|
310 |
+
],
|
311 |
+
outputs=[
|
312 |
+
gr.Gallery(label="তৈরি করা ছবি"),
|
313 |
+
gr.Textbox(label="ব্যবহৃত প্রম্পট")
|
314 |
+
],
|
315 |
+
title="বাংলা টেক্সট থেকে ছবি তৈরি",
|
316 |
+
description="যেকোনো বাংলা টেক্সট দিয়ে উচ্চমানের ছবি তৈরি করুন"
|
317 |
+
)
|
318 |
|
319 |
return demo
|
320 |
|
321 |
if __name__ == "__main__":
|
322 |
demo = create_gradio_interface()
|
323 |
+
# Fixed queue configuration for newer Gradio versions
|
324 |
+
demo.queue().launch(share=True)
|
325 |
+
|