Update app.py
Browse files
app.py
CHANGED
|
@@ -1,5 +1,4 @@
|
|
| 1 |
|
| 2 |
-
|
| 3 |
import torch
|
| 4 |
from transformers import CLIPModel, CLIPProcessor, AutoTokenizer, MarianMTModel, MarianTokenizer
|
| 5 |
from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler
|
|
@@ -11,6 +10,7 @@ import json
|
|
| 11 |
import logging
|
| 12 |
from dataclasses import dataclass
|
| 13 |
import gc
|
|
|
|
| 14 |
|
| 15 |
# Configure logging
|
| 16 |
logging.basicConfig(
|
|
@@ -30,6 +30,10 @@ class ModelCache:
|
|
| 30 |
def __init__(self, cache_dir: Path):
|
| 31 |
self.cache_dir = cache_dir
|
| 32 |
self.cache_dir.mkdir(parents=True, exist_ok=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
def load_model(self, model_id: str, load_func: callable, cache_name: str) -> Any:
|
| 35 |
try:
|
|
@@ -48,18 +52,32 @@ class EnhancedBanglaSDGenerator:
|
|
| 48 |
):
|
| 49 |
self.device = device or torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 50 |
logger.info(f"Using device: {self.device}")
|
| 51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
self.cache = ModelCache(Path(cache_dir))
|
| 53 |
self._initialize_models(banglaclip_weights_path)
|
| 54 |
self._load_context_data()
|
| 55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
def _initialize_models(self, banglaclip_weights_path: str):
|
| 57 |
try:
|
| 58 |
# Initialize translation models
|
| 59 |
self.bn2en_model_name = "Helsinki-NLP/opus-mt-bn-en"
|
| 60 |
self.translator = self.cache.load_model(
|
| 61 |
self.bn2en_model_name,
|
| 62 |
-
MarianMTModel.from_pretrained,
|
| 63 |
"translator"
|
| 64 |
).to(self.device)
|
| 65 |
self.trans_tokenizer = MarianTokenizer.from_pretrained(self.bn2en_model_name)
|
|
@@ -71,7 +89,7 @@ class EnhancedBanglaSDGenerator:
|
|
| 71 |
self.processor = CLIPProcessor.from_pretrained(self.clip_model_name)
|
| 72 |
self.tokenizer = AutoTokenizer.from_pretrained(self.bangla_text_model)
|
| 73 |
|
| 74 |
-
# Initialize Stable Diffusion
|
| 75 |
self._initialize_stable_diffusion()
|
| 76 |
|
| 77 |
except Exception as e:
|
|
@@ -79,45 +97,53 @@ class EnhancedBanglaSDGenerator:
|
|
| 79 |
raise RuntimeError(f"Failed to initialize models: {str(e)}")
|
| 80 |
|
| 81 |
def _initialize_stable_diffusion(self):
|
| 82 |
-
"""Initialize Stable Diffusion pipeline with
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
model_id
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
|
|
|
| 102 |
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
|
| 115 |
def _load_banglaclip_model(self, weights_path: str) -> CLIPModel:
|
| 116 |
try:
|
| 117 |
if not Path(weights_path).exists():
|
| 118 |
raise FileNotFoundError(f"BanglaCLIP weights not found at {weights_path}")
|
| 119 |
|
| 120 |
-
clip_model = CLIPModel.from_pretrained(
|
|
|
|
|
|
|
|
|
|
| 121 |
state_dict = torch.load(weights_path, map_location=self.device)
|
| 122 |
|
| 123 |
cleaned_state_dict = {
|
|
@@ -152,22 +178,12 @@ class EnhancedBanglaSDGenerator:
|
|
| 152 |
inputs = self.trans_tokenizer(bangla_text, return_tensors="pt", padding=True)
|
| 153 |
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
| 154 |
|
| 155 |
-
with torch.no_grad():
|
| 156 |
outputs = self.translator.generate(**inputs)
|
| 157 |
|
| 158 |
translated = self.trans_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 159 |
return translated
|
| 160 |
|
| 161 |
-
def _get_text_embedding(self, text: str):
|
| 162 |
-
"""Get text embedding from BanglaCLIP model."""
|
| 163 |
-
inputs = self.tokenizer(text, return_tensors="pt", padding=True, truncation=True)
|
| 164 |
-
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
| 165 |
-
|
| 166 |
-
with torch.no_grad():
|
| 167 |
-
outputs = self.banglaclip_model.get_text_features(**inputs)
|
| 168 |
-
|
| 169 |
-
return outputs
|
| 170 |
-
|
| 171 |
def generate_image(
|
| 172 |
self,
|
| 173 |
bangla_text: str,
|
|
@@ -182,16 +198,15 @@ class EnhancedBanglaSDGenerator:
|
|
| 182 |
if config.seed is not None:
|
| 183 |
torch.manual_seed(config.seed)
|
| 184 |
|
| 185 |
-
|
| 186 |
-
negative_prompt = self._get_negative_prompt()
|
| 187 |
-
|
| 188 |
-
# Pre-generation optimization
|
| 189 |
-
torch.set_num_threads(max(4, torch.get_num_threads()))
|
| 190 |
gc.collect()
|
| 191 |
torch.cuda.empty_cache() if torch.cuda.is_available() else None
|
| 192 |
|
| 193 |
-
|
| 194 |
-
|
|
|
|
|
|
|
|
|
|
| 195 |
result = self.pipe(
|
| 196 |
prompt=enhanced_prompt,
|
| 197 |
negative_prompt=negative_prompt,
|
|
@@ -202,7 +217,7 @@ class EnhancedBanglaSDGenerator:
|
|
| 202 |
use_memory_efficient_cross_attention=True
|
| 203 |
)
|
| 204 |
|
| 205 |
-
#
|
| 206 |
gc.collect()
|
| 207 |
torch.cuda.empty_cache() if torch.cuda.is_available() else None
|
| 208 |
|
|
@@ -337,5 +352,9 @@ def create_gradio_interface():
|
|
| 337 |
return demo
|
| 338 |
|
| 339 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
|
|
|
| 340 |
demo = create_gradio_interface()
|
| 341 |
demo.queue().launch(share=True)
|
|
|
|
| 1 |
|
|
|
|
| 2 |
import torch
|
| 3 |
from transformers import CLIPModel, CLIPProcessor, AutoTokenizer, MarianMTModel, MarianTokenizer
|
| 4 |
from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler
|
|
|
|
| 10 |
import logging
|
| 11 |
from dataclasses import dataclass
|
| 12 |
import gc
|
| 13 |
+
import os
|
| 14 |
|
| 15 |
# Configure logging
|
| 16 |
logging.basicConfig(
|
|
|
|
| 30 |
def __init__(self, cache_dir: Path):
|
| 31 |
self.cache_dir = cache_dir
|
| 32 |
self.cache_dir.mkdir(parents=True, exist_ok=True)
|
| 33 |
+
|
| 34 |
+
# Set environment variables for better memory management
|
| 35 |
+
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:512'
|
| 36 |
+
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
|
| 37 |
|
| 38 |
def load_model(self, model_id: str, load_func: callable, cache_name: str) -> Any:
|
| 39 |
try:
|
|
|
|
| 52 |
):
|
| 53 |
self.device = device or torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 54 |
logger.info(f"Using device: {self.device}")
|
| 55 |
+
|
| 56 |
+
# Set memory split for VRAM usage on CPU
|
| 57 |
+
self.memory_split = 0.5 # Use 50% of available VRAM
|
| 58 |
+
self.setup_memory_management()
|
| 59 |
+
|
| 60 |
self.cache = ModelCache(Path(cache_dir))
|
| 61 |
self._initialize_models(banglaclip_weights_path)
|
| 62 |
self._load_context_data()
|
| 63 |
|
| 64 |
+
def setup_memory_management(self):
|
| 65 |
+
"""Setup optimal memory management for CPU and VRAM"""
|
| 66 |
+
if torch.cuda.is_available():
|
| 67 |
+
total_memory = torch.cuda.get_device_properties(0).total_memory
|
| 68 |
+
torch.cuda.set_per_process_memory_fraction(self.memory_split)
|
| 69 |
+
|
| 70 |
+
# Optimize CPU memory
|
| 71 |
+
torch.set_num_threads(min(8, os.cpu_count() or 4))
|
| 72 |
+
torch.set_num_interop_threads(min(8, os.cpu_count() or 4))
|
| 73 |
+
|
| 74 |
def _initialize_models(self, banglaclip_weights_path: str):
|
| 75 |
try:
|
| 76 |
# Initialize translation models
|
| 77 |
self.bn2en_model_name = "Helsinki-NLP/opus-mt-bn-en"
|
| 78 |
self.translator = self.cache.load_model(
|
| 79 |
self.bn2en_model_name,
|
| 80 |
+
lambda x: MarianMTModel.from_pretrained(x, low_cpu_mem_usage=True),
|
| 81 |
"translator"
|
| 82 |
).to(self.device)
|
| 83 |
self.trans_tokenizer = MarianTokenizer.from_pretrained(self.bn2en_model_name)
|
|
|
|
| 89 |
self.processor = CLIPProcessor.from_pretrained(self.clip_model_name)
|
| 90 |
self.tokenizer = AutoTokenizer.from_pretrained(self.bangla_text_model)
|
| 91 |
|
| 92 |
+
# Initialize Stable Diffusion
|
| 93 |
self._initialize_stable_diffusion()
|
| 94 |
|
| 95 |
except Exception as e:
|
|
|
|
| 97 |
raise RuntimeError(f"Failed to initialize models: {str(e)}")
|
| 98 |
|
| 99 |
def _initialize_stable_diffusion(self):
|
| 100 |
+
"""Initialize Stable Diffusion pipeline with optimized settings."""
|
| 101 |
+
try:
|
| 102 |
+
self.pipe = self.cache.load_model(
|
| 103 |
+
"runwayml/stable-diffusion-v1-5",
|
| 104 |
+
lambda model_id: StableDiffusionPipeline.from_pretrained(
|
| 105 |
+
model_id,
|
| 106 |
+
torch_dtype=torch.float32,
|
| 107 |
+
safety_checker=None,
|
| 108 |
+
use_safetensors=True,
|
| 109 |
+
low_cpu_mem_usage=True,
|
| 110 |
+
),
|
| 111 |
+
"stable_diffusion"
|
| 112 |
+
)
|
| 113 |
|
| 114 |
+
# Optimize scheduler for speed
|
| 115 |
+
self.pipe.scheduler = DPMSolverMultistepScheduler.from_config(
|
| 116 |
+
self.pipe.scheduler.config,
|
| 117 |
+
use_karras_sigmas=True,
|
| 118 |
+
algorithm_type="dpmsolver++",
|
| 119 |
+
solver_order=2
|
| 120 |
+
)
|
| 121 |
|
| 122 |
+
# Memory optimizations
|
| 123 |
+
self.pipe.enable_attention_slicing(slice_size=1)
|
| 124 |
+
self.pipe.enable_vae_slicing()
|
| 125 |
+
self.pipe.enable_sequential_cpu_offload()
|
| 126 |
+
|
| 127 |
+
# VRAM optimization
|
| 128 |
+
if torch.cuda.is_available():
|
| 129 |
+
torch.cuda.empty_cache()
|
| 130 |
+
self.pipe.enable_model_cpu_offload()
|
| 131 |
+
|
| 132 |
+
self.pipe = self.pipe.to(self.device)
|
| 133 |
+
|
| 134 |
+
except Exception as e:
|
| 135 |
+
logger.error(f"Error initializing Stable Diffusion: {str(e)}")
|
| 136 |
+
raise
|
| 137 |
|
| 138 |
def _load_banglaclip_model(self, weights_path: str) -> CLIPModel:
|
| 139 |
try:
|
| 140 |
if not Path(weights_path).exists():
|
| 141 |
raise FileNotFoundError(f"BanglaCLIP weights not found at {weights_path}")
|
| 142 |
|
| 143 |
+
clip_model = CLIPModel.from_pretrained(
|
| 144 |
+
self.clip_model_name,
|
| 145 |
+
low_cpu_mem_usage=True
|
| 146 |
+
)
|
| 147 |
state_dict = torch.load(weights_path, map_location=self.device)
|
| 148 |
|
| 149 |
cleaned_state_dict = {
|
|
|
|
| 178 |
inputs = self.trans_tokenizer(bangla_text, return_tensors="pt", padding=True)
|
| 179 |
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
| 180 |
|
| 181 |
+
with torch.no_grad(), torch.cpu.amp.autocast():
|
| 182 |
outputs = self.translator.generate(**inputs)
|
| 183 |
|
| 184 |
translated = self.trans_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 185 |
return translated
|
| 186 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 187 |
def generate_image(
|
| 188 |
self,
|
| 189 |
bangla_text: str,
|
|
|
|
| 198 |
if config.seed is not None:
|
| 199 |
torch.manual_seed(config.seed)
|
| 200 |
|
| 201 |
+
# Clear memory before generation
|
|
|
|
|
|
|
|
|
|
|
|
|
| 202 |
gc.collect()
|
| 203 |
torch.cuda.empty_cache() if torch.cuda.is_available() else None
|
| 204 |
|
| 205 |
+
enhanced_prompt = self._enhance_prompt(bangla_text)
|
| 206 |
+
negative_prompt = self._get_negative_prompt()
|
| 207 |
+
|
| 208 |
+
# Use mixed precision for faster generation
|
| 209 |
+
with torch.inference_mode(), torch.cpu.amp.autocast():
|
| 210 |
result = self.pipe(
|
| 211 |
prompt=enhanced_prompt,
|
| 212 |
negative_prompt=negative_prompt,
|
|
|
|
| 217 |
use_memory_efficient_cross_attention=True
|
| 218 |
)
|
| 219 |
|
| 220 |
+
# Clear memory after generation
|
| 221 |
gc.collect()
|
| 222 |
torch.cuda.empty_cache() if torch.cuda.is_available() else None
|
| 223 |
|
|
|
|
| 352 |
return demo
|
| 353 |
|
| 354 |
if __name__ == "__main__":
|
| 355 |
+
# Set environment variables for better performance
|
| 356 |
+
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:512'
|
| 357 |
+
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
|
| 358 |
+
|
| 359 |
demo = create_gradio_interface()
|
| 360 |
demo.queue().launch(share=True)
|