File size: 15,148 Bytes
be92860
7ab7e54
 
be92860
 
7ab7e54
 
be92860
 
139d89b
7ab7e54
 
be92860
7ab7e54
 
 
 
be92860
7ab7e54
be92860
 
 
 
7ab7e54
 
 
 
 
 
 
 
 
3e277be
b9c8ca4
7ab7e54
 
 
 
 
 
 
 
 
 
be92860
7ab7e54
3e277be
7ab7e54
 
3f01bc9
7ab7e54
3e277be
7ab7e54
 
 
 
 
3e277be
7ab7e54
 
 
 
 
 
b9c8ca4
7ab7e54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be92860
7ab7e54
 
 
 
2cddaad
 
7ab7e54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f01bc9
7ab7e54
 
 
3f01bc9
7ab7e54
be92860
7ab7e54
b9c8ca4
3e277be
b9c8ca4
3e277be
 
 
 
 
 
 
 
 
 
 
 
 
b9c8ca4
3e277be
 
 
 
b9c8ca4
 
 
 
 
3e277be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9c8ca4
7ab7e54
 
 
 
 
 
 
 
b9c8ca4
7ab7e54
b9c8ca4
7ab7e54
 
 
 
 
 
 
 
 
 
 
 
 
 
3e277be
7ab7e54
3e277be
b9c8ca4
7ab7e54
b9c8ca4
7ab7e54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9c8ca4
 
7ab7e54
 
 
 
 
 
 
 
 
 
 
 
be92860
7ab7e54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f01bc9
7ab7e54
 
 
 
 
 
 
be92860
7ab7e54
 
 
be92860
7ab7e54
 
be92860
7ab7e54
 
 
 
 
 
 
be92860
7ab7e54
 
 
be92860
7ab7e54
 
 
 
 
 
be92860
3e277be
 
be92860
7ab7e54
 
 
 
be92860
7ab7e54
3e277be
7ab7e54
 
 
 
 
 
3e277be
2cddaad
3f01bc9
7ab7e54
 
 
 
3f01bc9
7ab7e54
3e277be
 
 
7ab7e54
 
 
 
 
3e277be
7ab7e54
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
"""
Ultra Supreme Optimizer - Main optimization engine for image analysis
VERSIÓN MEJORADA - Usa el prompt completo de CLIP Interrogator
"""

# IMPORTANT: spaces must be imported BEFORE torch or any CUDA-using library
import spaces
import gc
import logging
import re
from datetime import datetime
from typing import Tuple, Dict, Any, Optional

import torch
import numpy as np
from PIL import Image
from clip_interrogator import Config, Interrogator

from analyzer import UltraSupremeAnalyzer

logger = logging.getLogger(__name__)


class UltraSupremeOptimizer:
    """Main optimizer class for ultra supreme image analysis"""
    
    def __init__(self):
        self.interrogator: Optional[Interrogator] = None
        self.analyzer = UltraSupremeAnalyzer()
        self.usage_count = 0
        self.device = self._get_device()
        self.is_initialized = False
        # Inicializar modelo inmediatamente
        self.initialize_model()

    @staticmethod
    def _get_device() -> str:
        """Determine the best available device for computation"""
        if torch.cuda.is_available():
            return "cuda"
        elif torch.backends.mps.is_available():
            return "mps"
        else:
            return "cpu"

    def initialize_model(self) -> bool:
        """Initialize the CLIP interrogator model"""
        if self.is_initialized:
            return True
        
        try:
            # Configuración estándar sin forzar precisión
            config = Config(
                clip_model_name="ViT-L-14/openai",
                download_cache=True,
                chunk_size=2048,
                quiet=True,
                device="cpu"  # Inicializar en CPU
            )
            
            self.interrogator = Interrogator(config)
            self.is_initialized = True
            
            # Clean up memory after initialization
            gc.collect()
                
            return True
            
        except Exception as e:
            logger.error(f"Initialization error: {e}")
            return False

    def optimize_image(self, image: Any) -> Optional[Image.Image]:
        """Optimize image for processing"""
        if image is None:
            return None
            
        try:
            # Convert to PIL Image if necessary
            if isinstance(image, np.ndarray):
                image = Image.fromarray(image)
            elif not isinstance(image, Image.Image):
                image = Image.open(image)
            
            # Convert to RGB if necessary
            if image.mode != 'RGB':
                image = image.convert('RGB')
            
            # Resize if too large - usar tamaño generoso para máxima calidad
            max_size = 1024 if self.device != "cpu" else 768
            if image.size[0] > max_size or image.size[1] > max_size:
                image.thumbnail((max_size, max_size), Image.Resampling.LANCZOS)
            
            return image
            
        except Exception as e:
            logger.error(f"Image optimization error: {e}")
            return None

    def apply_flux_rules(self, base_prompt: str) -> str:
        """Aplica las reglas de Flux a un prompt base de CLIP Interrogator"""
        
        # Limpiar el prompt de elementos no deseados
        cleanup_patterns = [
            r',\s*trending on artstation',
            r',\s*trending on [^,]+',
            r',\s*\d+k\s*',
            r',\s*\d+k resolution',
            r',\s*artstation',
            r',\s*concept art',
            r',\s*digital art',
            r',\s*by greg rutkowski',  # Remover artistas genéricos overused
        ]
        
        cleaned_prompt = base_prompt
        for pattern in cleanup_patterns:
            cleaned_prompt = re.sub(pattern, '', cleaned_prompt, flags=re.IGNORECASE)
        
        # Detectar el tipo de imagen para añadir configuración de cámara apropiada
        camera_config = ""
        if any(word in base_prompt.lower() for word in ['portrait', 'person', 'man', 'woman', 'face']):
            camera_config = ", Shot on Hasselblad X2D 100C, 90mm f/2.5 lens at f/2.8, professional portrait photography"
        elif any(word in base_prompt.lower() for word in ['landscape', 'mountain', 'nature', 'outdoor']):
            camera_config = ", Shot on Phase One XT, 40mm f/4 lens at f/8, epic landscape photography"
        elif any(word in base_prompt.lower() for word in ['street', 'urban', 'city']):
            camera_config = ", Shot on Leica M11, 35mm f/1.4 lens at f/2.8, documentary street photography"
        else:
            camera_config = ", Shot on Phase One XF IQ4, 80mm f/2.8 lens at f/4, professional photography"
        
        # Añadir mejoras de iluminación si no están presentes
        if 'lighting' not in cleaned_prompt.lower():
            if 'dramatic' in cleaned_prompt.lower():
                cleaned_prompt += ", dramatic cinematic lighting"
            elif 'portrait' in cleaned_prompt.lower():
                cleaned_prompt += ", professional studio lighting with subtle rim light"
            else:
                cleaned_prompt += ", masterful natural lighting"
        
        # Construir el prompt final
        final_prompt = cleaned_prompt + camera_config
        
        # Asegurar que empiece con mayúscula
        final_prompt = final_prompt[0].upper() + final_prompt[1:] if final_prompt else final_prompt
        
        # Limpiar espacios y comas duplicadas
        final_prompt = re.sub(r'\s+', ' ', final_prompt)
        final_prompt = re.sub(r',\s*,+', ',', final_prompt)
        
        return final_prompt

    @spaces.GPU
    def run_clip_inference(self, image: Image.Image) -> Tuple[str, str, str]:
        """Solo la inferencia CLIP usa GPU"""
        try:
            # Mover modelos a GPU sin forzar precisión
            if self.device == "cuda":
                # Configurar el dispositivo en el interrogator
                self.interrogator.config.device = "cuda"
                
                # Mover modelos a GPU manteniendo su precisión nativa
                if hasattr(self.interrogator, 'clip_model') and self.interrogator.clip_model is not None:
                    self.interrogator.clip_model = self.interrogator.clip_model.to("cuda")
                    logger.info("CLIP model moved to GPU with native precision")
                
                if hasattr(self.interrogator, 'blip_model') and self.interrogator.blip_model is not None:
                    self.interrogator.blip_model = self.interrogator.blip_model.to("cuda")
                    logger.info("BLIP model moved to GPU with native precision")
            
            # Ejecutar inferencias CLIP con precisión nativa
            full_prompt = self.interrogator.interrogate(image)
            clip_fast = self.interrogator.interrogate_fast(image)
            clip_classic = self.interrogator.interrogate_classic(image)
            
            return full_prompt, clip_fast, clip_classic
            
        except Exception as e:
            logger.error(f"CLIP inference error: {e}")
            # Si falla en GPU, intentar en CPU
            if self.device == "cuda":
                logger.info("Falling back to CPU inference")
                self.interrogator.config.device = "cpu"
                
                if hasattr(self.interrogator, 'clip_model') and self.interrogator.clip_model is not None:
                    self.interrogator.clip_model = self.interrogator.clip_model.to("cpu")
                
                if hasattr(self.interrogator, 'blip_model') and self.interrogator.blip_model is not None:
                    self.interrogator.blip_model = self.interrogator.blip_model.to("cpu")
                
                # Reintentar en CPU
                full_prompt = self.interrogator.interrogate(image)
                clip_fast = self.interrogator.interrogate_fast(image)
                clip_classic = self.interrogator.interrogate_classic(image)
                
                return full_prompt, clip_fast, clip_classic
            else:
                raise e

    def generate_ultra_supreme_prompt(self, image: Any) -> Tuple[str, str, int, Dict[str, int]]:
        """
        Generate ultra supreme prompt from image usando el pipeline completo
        
        Returns:
            Tuple of (prompt, analysis_info, score, breakdown)
        """
        try:
            # Verificar que el modelo esté inicializado
            if not self.is_initialized:
                return "❌ Model initialization failed.", "Please refresh and try again.", 0, {}
            
            # Validate input
            if image is None:
                return "❌ Please upload an image.", "No image provided.", 0, {}
            
            self.usage_count += 1
            
            # Optimize image
            image = self.optimize_image(image)
            if image is None:
                return "❌ Image processing failed.", "Invalid image format.", 0, {}
            
            start_time = datetime.now()
            
            logger.info("ULTRA SUPREME ANALYSIS - Starting pipeline")
            
            # Ejecutar inferencia CLIP en GPU
            full_prompt, clip_fast, clip_classic = self.run_clip_inference(image)
            
            logger.info(f"Prompt completo de CLIP Interrogator: {full_prompt}")
            logger.info(f"Análisis Fast: {clip_fast}")
            logger.info(f"Análisis Classic: {clip_classic}")
            
            # 3. Aplicar reglas de Flux al prompt completo
            optimized_prompt = self.apply_flux_rules(full_prompt)
            
            # 4. Crear análisis para el reporte (simplificado)
            analysis_summary = {
                "base_prompt": full_prompt,
                "clip_fast": clip_fast,
                "clip_classic": clip_classic,
                "optimized": optimized_prompt,
                "detected_style": self._detect_style(full_prompt),
                "detected_subject": self._detect_subject(full_prompt)
            }
            
            # 5. Calcular score basado en la riqueza del prompt
            score = self._calculate_score(optimized_prompt, full_prompt)
            breakdown = {
                "base_quality": min(len(full_prompt) // 10, 25),
                "technical_enhancement": 25 if "Shot on" in optimized_prompt else 0,
                "lighting_quality": 25 if "lighting" in optimized_prompt.lower() else 0,
                "composition": 25 if any(word in optimized_prompt.lower() for word in ["professional", "masterful", "epic"]) else 0
            }
            score = sum(breakdown.values())
            
            end_time = datetime.now()
            duration = (end_time - start_time).total_seconds()
            
            # Memory cleanup
            gc.collect()
            if torch.cuda.is_available():
                torch.cuda.empty_cache()
            
            # Generate analysis report
            analysis_info = self._generate_analysis_report(
                analysis_summary, score, breakdown, duration
            )
            
            return optimized_prompt, analysis_info, score, breakdown
            
        except Exception as e:
            logger.error(f"Ultra supreme generation error: {e}")
            return f"❌ Error: {str(e)}", "Please try with a different image.", 0, {}

    def _detect_style(self, prompt: str) -> str:
        """Detecta el estilo principal del prompt"""
        styles = {
            "portrait": ["portrait", "person", "face", "headshot"],
            "landscape": ["landscape", "mountain", "nature", "scenery"],
            "street": ["street", "urban", "city"],
            "artistic": ["artistic", "abstract", "conceptual"],
            "dramatic": ["dramatic", "cinematic", "moody"]
        }
        
        for style_name, keywords in styles.items():
            if any(keyword in prompt.lower() for keyword in keywords):
                return style_name
        
        return "general"

    def _detect_subject(self, prompt: str) -> str:
        """Detecta el sujeto principal del prompt"""
        # Tomar las primeras palabras significativas
        words = prompt.split(',')[0].split()
        if len(words) > 3:
            return ' '.join(words[:4])
        return prompt.split(',')[0]

    def _calculate_score(self, optimized_prompt: str, base_prompt: str) -> int:
        """Calcula el score basado en la calidad del prompt"""
        score = 0
        
        # Base score por longitud y riqueza
        score += min(len(base_prompt) // 10, 25)
        
        # Technical enhancement
        if "Shot on" in optimized_prompt:
            score += 25
        
        # Lighting quality
        if "lighting" in optimized_prompt.lower():
            score += 25
        
        # Professional quality
        if any(word in optimized_prompt.lower() for word in ["professional", "masterful", "epic", "cinematic"]):
            score += 25
        
        return min(score, 100)

    def _generate_analysis_report(self, analysis: Dict[str, Any], 
                                  score: int, breakdown: Dict[str, int], 
                                  duration: float) -> str:
        """Generate detailed analysis report"""
        
        gpu_status = "⚡ ZeroGPU" if torch.cuda.is_available() else "💻 CPU"
        precision_info = "Native Model Precision" if torch.cuda.is_available() else "CPU Processing"
        
        # Extraer información clave
        detected_style = analysis.get("detected_style", "general").title()
        detected_subject = analysis.get("detected_subject", "Unknown")
        base_prompt_preview = analysis.get("base_prompt", "")[:100] + "..." if len(analysis.get("base_prompt", "")) > 100 else analysis.get("base_prompt", "")
        
        analysis_info = f"""**🚀 ULTRA SUPREME ANALYSIS COMPLETE**
**Processing:** {gpu_status}{duration:.1f}s • {precision_info}  
**Ultra Score:** {score}/100 • Breakdown: Base({breakdown.get('base_quality',0)}) Technical({breakdown.get('technical_enhancement',0)}) Lighting({breakdown.get('lighting_quality',0)}) Composition({breakdown.get('composition',0)})  
**Generation:** #{self.usage_count}  

**🧠 INTELLIGENT DETECTION:**
- **Detected Style:** {detected_style}
- **Main Subject:** {detected_subject}
- **Precision:** Using native model precision for optimal performance
- **Quality:** Maximum resolution processing (1024px)

**📊 CLIP INTERROGATOR ANALYSIS:**
- **Base Prompt:** {base_prompt_preview}
- **Fast Analysis:** {analysis.get('clip_fast', '')[:80]}...
- **Classic Analysis:** {analysis.get('clip_classic', '')[:80]}...

**⚡ OPTIMIZATION APPLIED:**
- ✅ Native precision inference for stability
- ✅ GPU acceleration when available
- ✅ Automatic fallback to CPU if needed
- ✅ Added professional camera specifications
- ✅ Enhanced lighting descriptions
- ✅ Applied Flux-specific optimizations
- ✅ Removed redundant/generic elements

**🔬 Powered by Pariente AI Research + CLIP Interrogator**"""
        
        return analysis_info