Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,148 Bytes
be92860 7ab7e54 be92860 7ab7e54 be92860 139d89b 7ab7e54 be92860 7ab7e54 be92860 7ab7e54 be92860 7ab7e54 3e277be b9c8ca4 7ab7e54 be92860 7ab7e54 3e277be 7ab7e54 3f01bc9 7ab7e54 3e277be 7ab7e54 3e277be 7ab7e54 b9c8ca4 7ab7e54 be92860 7ab7e54 2cddaad 7ab7e54 3f01bc9 7ab7e54 3f01bc9 7ab7e54 be92860 7ab7e54 b9c8ca4 3e277be b9c8ca4 3e277be b9c8ca4 3e277be b9c8ca4 3e277be b9c8ca4 7ab7e54 b9c8ca4 7ab7e54 b9c8ca4 7ab7e54 3e277be 7ab7e54 3e277be b9c8ca4 7ab7e54 b9c8ca4 7ab7e54 b9c8ca4 7ab7e54 be92860 7ab7e54 3f01bc9 7ab7e54 be92860 7ab7e54 be92860 7ab7e54 be92860 7ab7e54 be92860 7ab7e54 be92860 7ab7e54 be92860 3e277be be92860 7ab7e54 be92860 7ab7e54 3e277be 7ab7e54 3e277be 2cddaad 3f01bc9 7ab7e54 3f01bc9 7ab7e54 3e277be 7ab7e54 3e277be 7ab7e54 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 |
"""
Ultra Supreme Optimizer - Main optimization engine for image analysis
VERSIÓN MEJORADA - Usa el prompt completo de CLIP Interrogator
"""
# IMPORTANT: spaces must be imported BEFORE torch or any CUDA-using library
import spaces
import gc
import logging
import re
from datetime import datetime
from typing import Tuple, Dict, Any, Optional
import torch
import numpy as np
from PIL import Image
from clip_interrogator import Config, Interrogator
from analyzer import UltraSupremeAnalyzer
logger = logging.getLogger(__name__)
class UltraSupremeOptimizer:
"""Main optimizer class for ultra supreme image analysis"""
def __init__(self):
self.interrogator: Optional[Interrogator] = None
self.analyzer = UltraSupremeAnalyzer()
self.usage_count = 0
self.device = self._get_device()
self.is_initialized = False
# Inicializar modelo inmediatamente
self.initialize_model()
@staticmethod
def _get_device() -> str:
"""Determine the best available device for computation"""
if torch.cuda.is_available():
return "cuda"
elif torch.backends.mps.is_available():
return "mps"
else:
return "cpu"
def initialize_model(self) -> bool:
"""Initialize the CLIP interrogator model"""
if self.is_initialized:
return True
try:
# Configuración estándar sin forzar precisión
config = Config(
clip_model_name="ViT-L-14/openai",
download_cache=True,
chunk_size=2048,
quiet=True,
device="cpu" # Inicializar en CPU
)
self.interrogator = Interrogator(config)
self.is_initialized = True
# Clean up memory after initialization
gc.collect()
return True
except Exception as e:
logger.error(f"Initialization error: {e}")
return False
def optimize_image(self, image: Any) -> Optional[Image.Image]:
"""Optimize image for processing"""
if image is None:
return None
try:
# Convert to PIL Image if necessary
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
elif not isinstance(image, Image.Image):
image = Image.open(image)
# Convert to RGB if necessary
if image.mode != 'RGB':
image = image.convert('RGB')
# Resize if too large - usar tamaño generoso para máxima calidad
max_size = 1024 if self.device != "cpu" else 768
if image.size[0] > max_size or image.size[1] > max_size:
image.thumbnail((max_size, max_size), Image.Resampling.LANCZOS)
return image
except Exception as e:
logger.error(f"Image optimization error: {e}")
return None
def apply_flux_rules(self, base_prompt: str) -> str:
"""Aplica las reglas de Flux a un prompt base de CLIP Interrogator"""
# Limpiar el prompt de elementos no deseados
cleanup_patterns = [
r',\s*trending on artstation',
r',\s*trending on [^,]+',
r',\s*\d+k\s*',
r',\s*\d+k resolution',
r',\s*artstation',
r',\s*concept art',
r',\s*digital art',
r',\s*by greg rutkowski', # Remover artistas genéricos overused
]
cleaned_prompt = base_prompt
for pattern in cleanup_patterns:
cleaned_prompt = re.sub(pattern, '', cleaned_prompt, flags=re.IGNORECASE)
# Detectar el tipo de imagen para añadir configuración de cámara apropiada
camera_config = ""
if any(word in base_prompt.lower() for word in ['portrait', 'person', 'man', 'woman', 'face']):
camera_config = ", Shot on Hasselblad X2D 100C, 90mm f/2.5 lens at f/2.8, professional portrait photography"
elif any(word in base_prompt.lower() for word in ['landscape', 'mountain', 'nature', 'outdoor']):
camera_config = ", Shot on Phase One XT, 40mm f/4 lens at f/8, epic landscape photography"
elif any(word in base_prompt.lower() for word in ['street', 'urban', 'city']):
camera_config = ", Shot on Leica M11, 35mm f/1.4 lens at f/2.8, documentary street photography"
else:
camera_config = ", Shot on Phase One XF IQ4, 80mm f/2.8 lens at f/4, professional photography"
# Añadir mejoras de iluminación si no están presentes
if 'lighting' not in cleaned_prompt.lower():
if 'dramatic' in cleaned_prompt.lower():
cleaned_prompt += ", dramatic cinematic lighting"
elif 'portrait' in cleaned_prompt.lower():
cleaned_prompt += ", professional studio lighting with subtle rim light"
else:
cleaned_prompt += ", masterful natural lighting"
# Construir el prompt final
final_prompt = cleaned_prompt + camera_config
# Asegurar que empiece con mayúscula
final_prompt = final_prompt[0].upper() + final_prompt[1:] if final_prompt else final_prompt
# Limpiar espacios y comas duplicadas
final_prompt = re.sub(r'\s+', ' ', final_prompt)
final_prompt = re.sub(r',\s*,+', ',', final_prompt)
return final_prompt
@spaces.GPU
def run_clip_inference(self, image: Image.Image) -> Tuple[str, str, str]:
"""Solo la inferencia CLIP usa GPU"""
try:
# Mover modelos a GPU sin forzar precisión
if self.device == "cuda":
# Configurar el dispositivo en el interrogator
self.interrogator.config.device = "cuda"
# Mover modelos a GPU manteniendo su precisión nativa
if hasattr(self.interrogator, 'clip_model') and self.interrogator.clip_model is not None:
self.interrogator.clip_model = self.interrogator.clip_model.to("cuda")
logger.info("CLIP model moved to GPU with native precision")
if hasattr(self.interrogator, 'blip_model') and self.interrogator.blip_model is not None:
self.interrogator.blip_model = self.interrogator.blip_model.to("cuda")
logger.info("BLIP model moved to GPU with native precision")
# Ejecutar inferencias CLIP con precisión nativa
full_prompt = self.interrogator.interrogate(image)
clip_fast = self.interrogator.interrogate_fast(image)
clip_classic = self.interrogator.interrogate_classic(image)
return full_prompt, clip_fast, clip_classic
except Exception as e:
logger.error(f"CLIP inference error: {e}")
# Si falla en GPU, intentar en CPU
if self.device == "cuda":
logger.info("Falling back to CPU inference")
self.interrogator.config.device = "cpu"
if hasattr(self.interrogator, 'clip_model') and self.interrogator.clip_model is not None:
self.interrogator.clip_model = self.interrogator.clip_model.to("cpu")
if hasattr(self.interrogator, 'blip_model') and self.interrogator.blip_model is not None:
self.interrogator.blip_model = self.interrogator.blip_model.to("cpu")
# Reintentar en CPU
full_prompt = self.interrogator.interrogate(image)
clip_fast = self.interrogator.interrogate_fast(image)
clip_classic = self.interrogator.interrogate_classic(image)
return full_prompt, clip_fast, clip_classic
else:
raise e
def generate_ultra_supreme_prompt(self, image: Any) -> Tuple[str, str, int, Dict[str, int]]:
"""
Generate ultra supreme prompt from image usando el pipeline completo
Returns:
Tuple of (prompt, analysis_info, score, breakdown)
"""
try:
# Verificar que el modelo esté inicializado
if not self.is_initialized:
return "❌ Model initialization failed.", "Please refresh and try again.", 0, {}
# Validate input
if image is None:
return "❌ Please upload an image.", "No image provided.", 0, {}
self.usage_count += 1
# Optimize image
image = self.optimize_image(image)
if image is None:
return "❌ Image processing failed.", "Invalid image format.", 0, {}
start_time = datetime.now()
logger.info("ULTRA SUPREME ANALYSIS - Starting pipeline")
# Ejecutar inferencia CLIP en GPU
full_prompt, clip_fast, clip_classic = self.run_clip_inference(image)
logger.info(f"Prompt completo de CLIP Interrogator: {full_prompt}")
logger.info(f"Análisis Fast: {clip_fast}")
logger.info(f"Análisis Classic: {clip_classic}")
# 3. Aplicar reglas de Flux al prompt completo
optimized_prompt = self.apply_flux_rules(full_prompt)
# 4. Crear análisis para el reporte (simplificado)
analysis_summary = {
"base_prompt": full_prompt,
"clip_fast": clip_fast,
"clip_classic": clip_classic,
"optimized": optimized_prompt,
"detected_style": self._detect_style(full_prompt),
"detected_subject": self._detect_subject(full_prompt)
}
# 5. Calcular score basado en la riqueza del prompt
score = self._calculate_score(optimized_prompt, full_prompt)
breakdown = {
"base_quality": min(len(full_prompt) // 10, 25),
"technical_enhancement": 25 if "Shot on" in optimized_prompt else 0,
"lighting_quality": 25 if "lighting" in optimized_prompt.lower() else 0,
"composition": 25 if any(word in optimized_prompt.lower() for word in ["professional", "masterful", "epic"]) else 0
}
score = sum(breakdown.values())
end_time = datetime.now()
duration = (end_time - start_time).total_seconds()
# Memory cleanup
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
# Generate analysis report
analysis_info = self._generate_analysis_report(
analysis_summary, score, breakdown, duration
)
return optimized_prompt, analysis_info, score, breakdown
except Exception as e:
logger.error(f"Ultra supreme generation error: {e}")
return f"❌ Error: {str(e)}", "Please try with a different image.", 0, {}
def _detect_style(self, prompt: str) -> str:
"""Detecta el estilo principal del prompt"""
styles = {
"portrait": ["portrait", "person", "face", "headshot"],
"landscape": ["landscape", "mountain", "nature", "scenery"],
"street": ["street", "urban", "city"],
"artistic": ["artistic", "abstract", "conceptual"],
"dramatic": ["dramatic", "cinematic", "moody"]
}
for style_name, keywords in styles.items():
if any(keyword in prompt.lower() for keyword in keywords):
return style_name
return "general"
def _detect_subject(self, prompt: str) -> str:
"""Detecta el sujeto principal del prompt"""
# Tomar las primeras palabras significativas
words = prompt.split(',')[0].split()
if len(words) > 3:
return ' '.join(words[:4])
return prompt.split(',')[0]
def _calculate_score(self, optimized_prompt: str, base_prompt: str) -> int:
"""Calcula el score basado en la calidad del prompt"""
score = 0
# Base score por longitud y riqueza
score += min(len(base_prompt) // 10, 25)
# Technical enhancement
if "Shot on" in optimized_prompt:
score += 25
# Lighting quality
if "lighting" in optimized_prompt.lower():
score += 25
# Professional quality
if any(word in optimized_prompt.lower() for word in ["professional", "masterful", "epic", "cinematic"]):
score += 25
return min(score, 100)
def _generate_analysis_report(self, analysis: Dict[str, Any],
score: int, breakdown: Dict[str, int],
duration: float) -> str:
"""Generate detailed analysis report"""
gpu_status = "⚡ ZeroGPU" if torch.cuda.is_available() else "💻 CPU"
precision_info = "Native Model Precision" if torch.cuda.is_available() else "CPU Processing"
# Extraer información clave
detected_style = analysis.get("detected_style", "general").title()
detected_subject = analysis.get("detected_subject", "Unknown")
base_prompt_preview = analysis.get("base_prompt", "")[:100] + "..." if len(analysis.get("base_prompt", "")) > 100 else analysis.get("base_prompt", "")
analysis_info = f"""**🚀 ULTRA SUPREME ANALYSIS COMPLETE**
**Processing:** {gpu_status} • {duration:.1f}s • {precision_info}
**Ultra Score:** {score}/100 • Breakdown: Base({breakdown.get('base_quality',0)}) Technical({breakdown.get('technical_enhancement',0)}) Lighting({breakdown.get('lighting_quality',0)}) Composition({breakdown.get('composition',0)})
**Generation:** #{self.usage_count}
**🧠 INTELLIGENT DETECTION:**
- **Detected Style:** {detected_style}
- **Main Subject:** {detected_subject}
- **Precision:** Using native model precision for optimal performance
- **Quality:** Maximum resolution processing (1024px)
**📊 CLIP INTERROGATOR ANALYSIS:**
- **Base Prompt:** {base_prompt_preview}
- **Fast Analysis:** {analysis.get('clip_fast', '')[:80]}...
- **Classic Analysis:** {analysis.get('clip_classic', '')[:80]}...
**⚡ OPTIMIZATION APPLIED:**
- ✅ Native precision inference for stability
- ✅ GPU acceleration when available
- ✅ Automatic fallback to CPU if needed
- ✅ Added professional camera specifications
- ✅ Enhanced lighting descriptions
- ✅ Applied Flux-specific optimizations
- ✅ Removed redundant/generic elements
**🔬 Powered by Pariente AI Research + CLIP Interrogator**"""
return analysis_info |