Spaces:
Running
on
Zero
Running
on
Zero
Update optimizer.py
Browse files- optimizer.py +35 -22
optimizer.py
CHANGED
@@ -30,6 +30,8 @@ class UltraSupremeOptimizer:
|
|
30 |
self.usage_count = 0
|
31 |
self.device = self._get_device()
|
32 |
self.is_initialized = False
|
|
|
|
|
33 |
|
34 |
@staticmethod
|
35 |
def _get_device() -> str:
|
@@ -42,27 +44,25 @@ class UltraSupremeOptimizer:
|
|
42 |
return "cpu"
|
43 |
|
44 |
def initialize_model(self) -> bool:
|
45 |
-
"""Initialize the CLIP interrogator model"""
|
46 |
if self.is_initialized:
|
47 |
return True
|
48 |
|
49 |
try:
|
|
|
50 |
config = Config(
|
51 |
clip_model_name="ViT-L-14/openai",
|
52 |
download_cache=True,
|
53 |
chunk_size=2048,
|
54 |
quiet=True,
|
55 |
-
device=
|
56 |
)
|
57 |
|
58 |
self.interrogator = Interrogator(config)
|
59 |
self.is_initialized = True
|
60 |
|
61 |
# Clean up memory after initialization
|
62 |
-
|
63 |
-
gc.collect()
|
64 |
-
else:
|
65 |
-
torch.cuda.empty_cache()
|
66 |
|
67 |
return True
|
68 |
|
@@ -149,18 +149,36 @@ class UltraSupremeOptimizer:
|
|
149 |
return final_prompt
|
150 |
|
151 |
@spaces.GPU
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
def generate_ultra_supreme_prompt(self, image: Any) -> Tuple[str, str, int, Dict[str, int]]:
|
153 |
"""
|
154 |
Generate ultra supreme prompt from image usando el pipeline completo
|
|
|
155 |
|
156 |
Returns:
|
157 |
Tuple of (prompt, analysis_info, score, breakdown)
|
158 |
"""
|
159 |
try:
|
160 |
-
#
|
161 |
if not self.is_initialized:
|
162 |
-
|
163 |
-
return "❌ Model initialization failed.", "Please refresh and try again.", 0, {}
|
164 |
|
165 |
# Validate input
|
166 |
if image is None:
|
@@ -178,15 +196,10 @@ class UltraSupremeOptimizer:
|
|
178 |
# NUEVO PIPELINE: Usar CLIP Interrogator completo
|
179 |
logger.info("ULTRA SUPREME ANALYSIS - Usando pipeline completo de CLIP Interrogator")
|
180 |
|
181 |
-
#
|
182 |
-
|
183 |
-
full_prompt = self.interrogator.interrogate(image)
|
184 |
-
logger.info(f"Prompt completo de CLIP Interrogator: {full_prompt}")
|
185 |
-
|
186 |
-
# 2. También obtener los análisis individuales para el reporte
|
187 |
-
clip_fast = self.interrogator.interrogate_fast(image)
|
188 |
-
clip_classic = self.interrogator.interrogate_classic(image)
|
189 |
|
|
|
190 |
logger.info(f"Análisis Fast: {clip_fast}")
|
191 |
logger.info(f"Análisis Classic: {clip_classic}")
|
192 |
|
@@ -217,9 +230,8 @@ class UltraSupremeOptimizer:
|
|
217 |
duration = (end_time - start_time).total_seconds()
|
218 |
|
219 |
# Memory cleanup
|
220 |
-
|
221 |
-
|
222 |
-
else:
|
223 |
torch.cuda.empty_cache()
|
224 |
|
225 |
# Generate analysis report
|
@@ -298,7 +310,7 @@ class UltraSupremeOptimizer:
|
|
298 |
**🧠 INTELLIGENT DETECTION:**
|
299 |
- **Detected Style:** {detected_style}
|
300 |
- **Main Subject:** {detected_subject}
|
301 |
-
- **Pipeline:**
|
302 |
|
303 |
**📊 CLIP INTERROGATOR ANALYSIS:**
|
304 |
- **Base Prompt:** {base_prompt_preview}
|
@@ -306,7 +318,8 @@ class UltraSupremeOptimizer:
|
|
306 |
- **Classic Analysis:** {analysis.get('clip_classic', '')[:80]}...
|
307 |
|
308 |
**⚡ OPTIMIZATION APPLIED:**
|
309 |
-
- ✅
|
|
|
310 |
- ✅ Added professional camera specifications
|
311 |
- ✅ Enhanced lighting descriptions
|
312 |
- ✅ Applied Flux-specific optimizations
|
|
|
30 |
self.usage_count = 0
|
31 |
self.device = self._get_device()
|
32 |
self.is_initialized = False
|
33 |
+
# Inicializar modelo inmediatamente en CPU
|
34 |
+
self.initialize_model()
|
35 |
|
36 |
@staticmethod
|
37 |
def _get_device() -> str:
|
|
|
44 |
return "cpu"
|
45 |
|
46 |
def initialize_model(self) -> bool:
|
47 |
+
"""Initialize the CLIP interrogator model - SIN decorador GPU"""
|
48 |
if self.is_initialized:
|
49 |
return True
|
50 |
|
51 |
try:
|
52 |
+
# Inicializar en CPU para evitar timeout de GPU
|
53 |
config = Config(
|
54 |
clip_model_name="ViT-L-14/openai",
|
55 |
download_cache=True,
|
56 |
chunk_size=2048,
|
57 |
quiet=True,
|
58 |
+
device="cpu" # Inicializar en CPU primero
|
59 |
)
|
60 |
|
61 |
self.interrogator = Interrogator(config)
|
62 |
self.is_initialized = True
|
63 |
|
64 |
# Clean up memory after initialization
|
65 |
+
gc.collect()
|
|
|
|
|
|
|
66 |
|
67 |
return True
|
68 |
|
|
|
149 |
return final_prompt
|
150 |
|
151 |
@spaces.GPU
|
152 |
+
def run_clip_inference(self, image: Image.Image) -> Tuple[str, str, str]:
|
153 |
+
"""Solo la inferencia CLIP usa GPU - modelo ya inicializado"""
|
154 |
+
try:
|
155 |
+
# Mover modelo a GPU solo para inferencia
|
156 |
+
if hasattr(self.interrogator, 'clip_model') and self.device == "cuda":
|
157 |
+
self.interrogator.clip_model = self.interrogator.clip_model.to("cuda")
|
158 |
+
|
159 |
+
# Ejecutar inferencias CLIP
|
160 |
+
full_prompt = self.interrogator.interrogate(image)
|
161 |
+
clip_fast = self.interrogator.interrogate_fast(image)
|
162 |
+
clip_classic = self.interrogator.interrogate_classic(image)
|
163 |
+
|
164 |
+
return full_prompt, clip_fast, clip_classic
|
165 |
+
|
166 |
+
except Exception as e:
|
167 |
+
logger.error(f"CLIP inference error: {e}")
|
168 |
+
raise e
|
169 |
+
|
170 |
def generate_ultra_supreme_prompt(self, image: Any) -> Tuple[str, str, int, Dict[str, int]]:
|
171 |
"""
|
172 |
Generate ultra supreme prompt from image usando el pipeline completo
|
173 |
+
INICIALIZACIÓN EN CPU, SOLO INFERENCIA EN GPU
|
174 |
|
175 |
Returns:
|
176 |
Tuple of (prompt, analysis_info, score, breakdown)
|
177 |
"""
|
178 |
try:
|
179 |
+
# Verificar que el modelo esté inicializado
|
180 |
if not self.is_initialized:
|
181 |
+
return "❌ Model initialization failed.", "Please refresh and try again.", 0, {}
|
|
|
182 |
|
183 |
# Validate input
|
184 |
if image is None:
|
|
|
196 |
# NUEVO PIPELINE: Usar CLIP Interrogator completo
|
197 |
logger.info("ULTRA SUPREME ANALYSIS - Usando pipeline completo de CLIP Interrogator")
|
198 |
|
199 |
+
# Ejecutar inferencia CLIP en GPU (modelo ya inicializado en CPU)
|
200 |
+
full_prompt, clip_fast, clip_classic = self.run_clip_inference(image)
|
|
|
|
|
|
|
|
|
|
|
|
|
201 |
|
202 |
+
logger.info(f"Prompt completo de CLIP Interrogator: {full_prompt}")
|
203 |
logger.info(f"Análisis Fast: {clip_fast}")
|
204 |
logger.info(f"Análisis Classic: {clip_classic}")
|
205 |
|
|
|
230 |
duration = (end_time - start_time).total_seconds()
|
231 |
|
232 |
# Memory cleanup
|
233 |
+
gc.collect()
|
234 |
+
if torch.cuda.is_available():
|
|
|
235 |
torch.cuda.empty_cache()
|
236 |
|
237 |
# Generate analysis report
|
|
|
310 |
**🧠 INTELLIGENT DETECTION:**
|
311 |
- **Detected Style:** {detected_style}
|
312 |
- **Main Subject:** {detected_subject}
|
313 |
+
- **Pipeline:** CPU Init → GPU Inference → Flux Optimization
|
314 |
|
315 |
**📊 CLIP INTERROGATOR ANALYSIS:**
|
316 |
- **Base Prompt:** {base_prompt_preview}
|
|
|
318 |
- **Classic Analysis:** {analysis.get('clip_classic', '')[:80]}...
|
319 |
|
320 |
**⚡ OPTIMIZATION APPLIED:**
|
321 |
+
- ✅ Model initialized in CPU (no timeout)
|
322 |
+
- ✅ GPU used only for inference
|
323 |
- ✅ Added professional camera specifications
|
324 |
- ✅ Enhanced lighting descriptions
|
325 |
- ✅ Applied Flux-specific optimizations
|