Malaji71 commited on
Commit
3f01bc9
·
verified ·
1 Parent(s): cc5af1f

Update optimizer.py

Browse files
Files changed (1) hide show
  1. optimizer.py +309 -187
optimizer.py CHANGED
@@ -1,211 +1,333 @@
1
  """
2
- Ultra Supreme Optimizer - Main optimization engine for image analysis
3
  """
4
 
5
- # IMPORTANT: spaces must be imported BEFORE torch or any CUDA-using library
6
- import spaces
7
  import gc
8
  import logging
9
- from datetime import datetime
10
- from typing import Tuple, Dict, Any, Optional
11
 
12
- import torch
13
- import numpy as np
14
- from PIL import Image
15
- from clip_interrogator import Config, Interrogator
16
 
17
- from analyzer import UltraSupremeAnalyzer
 
 
 
18
 
 
 
19
  logger = logging.getLogger(__name__)
20
 
 
 
21
 
22
- class UltraSupremeOptimizer:
23
- """Main optimizer class for ultra supreme image analysis"""
24
-
25
- def __init__(self):
26
- self.interrogator: Optional[Interrogator] = None
27
- self.analyzer = UltraSupremeAnalyzer()
28
- self.usage_count = 0
29
- self.device = self._get_device()
30
- self.is_initialized = False
31
-
32
- @staticmethod
33
- def _get_device() -> str:
34
- """Determine the best available device for computation"""
35
- if torch.cuda.is_available():
36
- return "cuda"
37
- elif torch.backends.mps.is_available():
38
- return "mps"
39
- else:
40
- return "cpu"
41
 
42
- def initialize_model(self) -> bool:
43
- """Initialize the CLIP interrogator model"""
44
- if self.is_initialized:
45
- return True
46
 
47
- try:
48
- config = Config(
49
- clip_model_name="ViT-L-14/openai",
50
- download_cache=True,
51
- chunk_size=2048,
52
- quiet=True,
53
- device=self.device
54
- )
55
-
56
- self.interrogator = Interrogator(config)
57
- self.is_initialized = True
58
-
59
- # Clean up memory after initialization
60
- if self.device == "cpu":
61
- gc.collect()
62
- else:
63
- torch.cuda.empty_cache()
64
-
65
- return True
66
 
67
- except Exception as e:
68
- logger.error(f"Initialization error: {e}")
69
- return False
 
 
 
 
 
 
 
 
 
 
70
 
71
- def optimize_image(self, image: Any) -> Optional[Image.Image]:
72
- """Optimize image for processing"""
73
- if image is None:
74
- return None
75
-
76
- try:
77
- # Convert to PIL Image if necessary
78
- if isinstance(image, np.ndarray):
79
- image = Image.fromarray(image)
80
- elif not isinstance(image, Image.Image):
81
- image = Image.open(image)
82
-
83
- # Convert to RGB if necessary
84
- if image.mode != 'RGB':
85
- image = image.convert('RGB')
86
-
87
- # Resize if too large
88
- max_size = 768 if self.device != "cpu" else 512
89
- if image.size[0] > max_size or image.size[1] > max_size:
90
- image.thumbnail((max_size, max_size), Image.Resampling.LANCZOS)
91
-
92
- return image
93
-
94
- except Exception as e:
95
- logger.error(f"Image optimization error: {e}")
96
- return None
97
 
98
- @spaces.GPU
99
- def generate_ultra_supreme_prompt(self, image: Any) -> Tuple[str, str, int, Dict[str, int]]:
100
- """
101
- Generate ultra supreme prompt from image
102
-
103
- Returns:
104
- Tuple of (prompt, analysis_info, score, breakdown)
105
- """
106
- try:
107
- # Initialize model if needed
108
- if not self.is_initialized:
109
- if not self.initialize_model():
110
- return "❌ Model initialization failed.", "Please refresh and try again.", 0, {}
111
-
112
- # Validate input
113
- if image is None:
114
- return "❌ Please upload an image.", "No image provided.", 0, {}
115
-
116
- self.usage_count += 1
117
-
118
- # Optimize image
119
- image = self.optimize_image(image)
120
- if image is None:
121
- return "❌ Image processing failed.", "Invalid image format.", 0, {}
122
-
123
- start_time = datetime.now()
124
-
125
- # ULTRA SUPREME TRIPLE CLIP ANALYSIS
126
- logger.info("ULTRA SUPREME ANALYSIS - Maximum intelligence deployment")
127
-
128
- clip_fast = self.interrogator.interrogate_fast(image)
129
- clip_classic = self.interrogator.interrogate_classic(image)
130
- clip_best = self.interrogator.interrogate(image)
131
-
132
- logger.info(f"ULTRA CLIP Results:\nFast: {clip_fast}\nClassic: {clip_classic}\nBest: {clip_best}")
133
-
134
- # ULTRA SUPREME ANALYSIS
135
- ultra_analysis = self.analyzer.ultra_supreme_analysis(clip_fast, clip_classic, clip_best)
136
-
137
- # BUILD ULTRA SUPREME FLUX PROMPT
138
- optimized_prompt = self.analyzer.build_ultra_supreme_prompt(
139
- ultra_analysis,
140
- [clip_fast, clip_classic, clip_best]
141
- )
142
-
143
- # CALCULATE ULTRA SUPREME SCORE
144
- score, breakdown = self.analyzer.calculate_ultra_supreme_score(optimized_prompt, ultra_analysis)
145
-
146
- end_time = datetime.now()
147
- duration = (end_time - start_time).total_seconds()
148
-
149
- # Memory cleanup
150
- if self.device == "cpu":
151
- gc.collect()
152
- else:
153
- torch.cuda.empty_cache()
154
-
155
- # Generate analysis report
156
- analysis_info = self._generate_analysis_report(
157
- ultra_analysis, clip_fast, clip_classic, clip_best,
158
- score, breakdown, duration
159
- )
160
-
161
- return optimized_prompt, analysis_info, score, breakdown
162
-
163
- except Exception as e:
164
- logger.error(f"Ultra supreme generation error: {e}")
165
- return f"❌ Error: {str(e)}", "Please try with a different image.", 0, {}
166
 
167
- def _generate_analysis_report(self, ultra_analysis: Dict[str, Any],
168
- clip_fast: str, clip_classic: str, clip_best: str,
169
- score: int, breakdown: Dict[str, int],
170
- duration: float) -> str:
171
- """Generate detailed analysis report"""
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
172
 
173
- gpu_status = "⚡ ZeroGPU" if torch.cuda.is_available() else "💻 CPU"
 
 
 
 
 
174
 
175
- # Format detected elements - Fixed the .title() error by checking for None
176
- features = ", ".join(ultra_analysis["facial_ultra"]["facial_hair"]) if ultra_analysis["facial_ultra"]["facial_hair"] else "None detected"
177
- cultural = ", ".join(ultra_analysis["demographic"]["cultural_religious"]) if ultra_analysis["demographic"]["cultural_religious"] else "None detected"
178
- clothing = ", ".join(ultra_analysis["clothing_accessories"]["eyewear"] + ultra_analysis["clothing_accessories"]["headwear"]) if ultra_analysis["clothing_accessories"]["eyewear"] or ultra_analysis["clothing_accessories"]["headwear"] else "None detected"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
179
 
180
- # Safe access to potentially None values
181
- age_category = ultra_analysis["demographic"].get("age_category", "Unspecified")
182
- if age_category and age_category != "Unspecified":
183
- age_category = age_category.replace("_", " ").title()
 
 
184
 
185
- setting_type = ultra_analysis["environmental"].get("setting_type", "Standard")
186
- if setting_type and setting_type != "Standard":
187
- setting_type = setting_type.title()
 
188
 
189
- primary_emotion = ultra_analysis["emotional_state"].get("primary_emotion", "Neutral")
190
- if primary_emotion and primary_emotion != "Neutral":
191
- primary_emotion = primary_emotion.title()
192
 
193
- analysis_info = f"""**🚀 ULTRA SUPREME ANALYSIS COMPLETE**
194
- **Processing:** {gpu_status} {duration:.1f}s Triple CLIP Ultra Intelligence
195
- **Ultra Score:** {score}/100 Breakdown: Structure({breakdown.get('structure',0)}) Features({breakdown.get('features',0)}) Cultural({breakdown.get('cultural',0)}) Emotional({breakdown.get('emotional',0)}) Technical({breakdown.get('technical',0)})
196
- **Generation:** #{self.usage_count}
197
- **🧠 ULTRA DEEP DETECTION:**
198
- - **Age Category:** {age_category} (Confidence: {ultra_analysis["demographic"].get("age_confidence", 0)})
199
- - **Cultural Context:** {cultural}
200
- - **Facial Features:** {features}
201
- - **Accessories:** {clothing}
202
- - **Setting:** {setting_type}
203
- - **Emotion:** {primary_emotion}
204
- - **Total Features:** {ultra_analysis["intelligence_metrics"]["total_features_detected"]}
205
- **📊 CLIP ANALYSIS SOURCES:**
206
- - **Fast:** {clip_fast[:50]}...
207
- - **Classic:** {clip_classic[:50]}...
208
- - **Best:** {clip_best[:50]}...
209
- **⚡ ULTRA OPTIMIZATION:** Applied absolute maximum depth analysis with Pariente AI research rules"""
210
 
211
- return analysis_info
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  """
2
+ Ultra Supreme Flux Optimizer - Main Gradio Interface
3
  """
4
 
5
+ import gradio as gr
6
+ import torch
7
  import gc
8
  import logging
9
+ import warnings
10
+ import os
11
 
12
+ from optimizer import UltraSupremeOptimizer
13
+ from constants import SCORE_GRADES
 
 
14
 
15
+ # Configure warnings and environment
16
+ warnings.filterwarnings("ignore", category=FutureWarning)
17
+ warnings.filterwarnings("ignore", category=UserWarning)
18
+ os.environ["TOKENIZERS_PARALLELISM"] = "false"
19
 
20
+ # Configure logging
21
+ logging.basicConfig(level=logging.INFO)
22
  logger = logging.getLogger(__name__)
23
 
24
+ # Initialize the optimizer globally
25
+ optimizer = UltraSupremeOptimizer()
26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
 
28
+ def process_ultra_supreme_analysis(image):
29
+ """Process image and generate ultra supreme analysis"""
30
+ try:
31
+ prompt, info, score, breakdown = optimizer.generate_ultra_supreme_prompt(image)
32
 
33
+ # Find appropriate grade based on score
34
+ grade_info = None
35
+ for threshold, grade_data in sorted(SCORE_GRADES.items(), reverse=True):
36
+ if score >= threshold:
37
+ grade_info = grade_data
38
+ break
39
+
40
+ if not grade_info:
41
+ grade_info = SCORE_GRADES[0] # Default to lowest grade
 
 
 
 
 
 
 
 
 
 
42
 
43
+ score_html = f'''
44
+ <div style="text-align: center; padding: 2rem; background: linear-gradient(135deg, #f0fdf4 0%, #dcfce7 100%); border: 3px solid {grade_info["color"]}; border-radius: 16px; margin: 1rem 0; box-shadow: 0 8px 25px -5px rgba(0, 0, 0, 0.1);">
45
+ <div style="font-size: 3rem; font-weight: 800; color: {grade_info["color"]}; margin: 0; text-shadow: 0 2px 4px rgba(0,0,0,0.1);">{score}</div>
46
+ <div style="font-size: 1.25rem; color: #15803d; margin: 0.5rem 0; text-transform: uppercase; letter-spacing: 0.1em; font-weight: 700;">{grade_info["grade"]}</div>
47
+ <div style="font-size: 1rem; color: #15803d; margin: 0; text-transform: uppercase; letter-spacing: 0.05em; font-weight: 500;">Ultra Supreme Intelligence Score</div>
48
+ </div>
49
+ '''
50
+
51
+ return prompt, info, score_html
52
+
53
+ except Exception as e:
54
+ logger.error(f"Ultra supreme wrapper error: {e}")
55
+ return "❌ Processing failed", f"Error: {str(e)}", '<div style="text-align: center; color: red;">Error</div>'
56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57
 
58
+ def clear_outputs():
59
+ """Clear all outputs and free memory"""
60
+ gc.collect()
61
+ if torch.cuda.is_available():
62
+ torch.cuda.empty_cache()
63
+ return "", "", '<div style="text-align: center; padding: 1rem;"><div style="font-size: 2rem; color: #ccc;">--</div><div style="font-size: 0.875rem; color: #999;">Ultra Supreme Score</div></div>'
64
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65
 
66
+ def create_interface():
67
+ """Create the Gradio interface"""
68
+
69
+ css = """
70
+ @import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700;800;900&display=swap');
71
+
72
+ .gradio-container {
73
+ max-width: 1600px !important;
74
+ margin: 0 auto !important;
75
+ font-family: 'Inter', -apple-system, BlinkMacSystemFont, sans-serif !important;
76
+ background: linear-gradient(135deg, #f8fafc 0%, #f1f5f9 100%) !important;
77
+ }
78
+
79
+ /* FIX CRÍTICO PARA TEXTO BLANCO SOBRE BLANCO */
80
+ .markdown-text, .markdown-text *,
81
+ .prose, .prose *,
82
+ .gr-markdown, .gr-markdown *,
83
+ div[class*="markdown"], div[class*="markdown"] * {
84
+ color: #1f2937 !important;
85
+ }
86
+
87
+ .markdown-text h1, .markdown-text h2, .markdown-text h3,
88
+ .prose h1, .prose h2, .prose h3,
89
+ .gr-markdown h1, .gr-markdown h2, .gr-markdown h3 {
90
+ color: #111827 !important;
91
+ font-weight: 700 !important;
92
+ }
93
+
94
+ .markdown-text p, .markdown-text li, .markdown-text ul, .markdown-text ol,
95
+ .prose p, .prose li, .prose ul, .prose ol,
96
+ .gr-markdown p, .gr-markdown li, .gr-markdown ul, .gr-markdown ol {
97
+ color: #374151 !important;
98
+ }
99
+
100
+ .markdown-text strong, .prose strong, .gr-markdown strong {
101
+ color: #111827 !important;
102
+ font-weight: 700 !important;
103
+ }
104
+
105
+ /* Asegurar que las listas sean visibles */
106
+ ul, ol {
107
+ color: #374151 !important;
108
+ }
109
+
110
+ li {
111
+ color: #374151 !important;
112
+ }
113
+
114
+ /* Bullets de listas */
115
+ ul li::marker {
116
+ color: #374151 !important;
117
+ }
118
+
119
+ .main-header {
120
+ text-align: center;
121
+ padding: 3rem 0 4rem 0;
122
+ background: linear-gradient(135deg, #0c0a09 0%, #1c1917 30%, #292524 60%, #44403c 100%);
123
+ color: white;
124
+ margin: -2rem -2rem 3rem -2rem;
125
+ border-radius: 0 0 32px 32px;
126
+ box-shadow: 0 20px 50px -10px rgba(0, 0, 0, 0.25);
127
+ position: relative;
128
+ overflow: hidden;
129
+ }
130
+
131
+ .main-header::before {
132
+ content: '';
133
+ position: absolute;
134
+ top: 0;
135
+ left: 0;
136
+ right: 0;
137
+ bottom: 0;
138
+ background: linear-gradient(45deg, rgba(59, 130, 246, 0.1) 0%, rgba(147, 51, 234, 0.1) 50%, rgba(236, 72, 153, 0.1) 100%);
139
+ z-index: 1;
140
+ }
141
+
142
+ .main-title {
143
+ font-size: 4rem !important;
144
+ font-weight: 900 !important;
145
+ margin: 0 0 1rem 0 !important;
146
+ letter-spacing: -0.05em !important;
147
+ background: linear-gradient(135deg, #60a5fa 0%, #3b82f6 25%, #8b5cf6 50%, #a855f7 75%, #ec4899 100%);
148
+ -webkit-background-clip: text;
149
+ -webkit-text-fill-color: transparent;
150
+ background-clip: text;
151
+ position: relative;
152
+ z-index: 2;
153
+ }
154
+
155
+ .subtitle {
156
+ font-size: 1.5rem !important;
157
+ font-weight: 500 !important;
158
+ opacity: 0.95 !important;
159
+ margin: 0 !important;
160
+ position: relative;
161
+ z-index: 2;
162
+ color: #ffffff !important;
163
+ }
164
+
165
+ .prompt-output {
166
+ font-family: 'SF Mono', 'Monaco', 'Inconsolata', 'Roboto Mono', monospace !important;
167
+ font-size: 15px !important;
168
+ line-height: 1.8 !important;
169
+ background: linear-gradient(135deg, #ffffff 0%, #f8fafc 100%) !important;
170
+ border: 2px solid #e2e8f0 !important;
171
+ border-radius: 20px !important;
172
+ padding: 2.5rem !important;
173
+ box-shadow: 0 20px 50px -10px rgba(0, 0, 0, 0.1) !important;
174
+ transition: all 0.3s ease !important;
175
+ color: #1f2937 !important;
176
+ }
177
+
178
+ .prompt-output:hover {
179
+ box-shadow: 0 25px 60px -5px rgba(0, 0, 0, 0.15) !important;
180
+ transform: translateY(-2px) !important;
181
+ }
182
+
183
+ /* Fix para el output de información */
184
+ .gr-textbox label {
185
+ color: #374151 !important;
186
+ }
187
+
188
+ /* Fix para footer */
189
+ footer, .footer, [class*="footer"] {
190
+ color: #374151 !important;
191
+ }
192
+
193
+ footer *, .footer *, [class*="footer"] * {
194
+ color: #374151 !important;
195
+ }
196
+
197
+ footer a, .footer a, [class*="footer"] a {
198
+ color: #3b82f6 !important;
199
+ text-decoration: underline;
200
+ }
201
+
202
+ footer a:hover, .footer a:hover, [class*="footer"] a:hover {
203
+ color: #2563eb !important;
204
+ }
205
+
206
+ /* Botones */
207
+ .gr-button-primary {
208
+ background: linear-gradient(135deg, #3b82f6 0%, #2563eb 100%) !important;
209
+ border: none !important;
210
+ color: white !important;
211
+ }
212
+
213
+ .gr-button-primary:hover {
214
+ background: linear-gradient(135deg, #2563eb 0%, #1d4ed8 100%) !important;
215
+ transform: translateY(-1px);
216
+ box-shadow: 0 4px 12px rgba(37, 99, 235, 0.3);
217
+ }
218
+
219
+ /* Asegurar que TODOS los elementos de texto sean visibles */
220
+ * {
221
+ -webkit-text-fill-color: initial !important;
222
+ }
223
+
224
+ /* Solo el título principal mantiene su gradiente */
225
+ .main-title {
226
+ -webkit-text-fill-color: transparent !important;
227
+ }
228
+ """
229
+
230
+ with gr.Blocks(
231
+ theme=gr.themes.Soft(),
232
+ title="🚀 Ultra Supreme Flux Optimizer",
233
+ css=css
234
+ ) as interface:
235
 
236
+ gr.HTML("""
237
+ <div class="main-header">
238
+ <div class="main-title">🚀 ULTRA SUPREME FLUX OPTIMIZER</div>
239
+ <div class="subtitle">Maximum Absolute Intelligence • Triple CLIP Analysis • Zero Compromise • Research Supremacy</div>
240
+ </div>
241
+ """)
242
 
243
+ with gr.Row():
244
+ with gr.Column(scale=1):
245
+ gr.Markdown("## 🧠 Ultra Supreme Analysis Engine")
246
+
247
+ image_input = gr.Image(
248
+ label="Upload image for MAXIMUM intelligence analysis",
249
+ type="pil",
250
+ height=500
251
+ )
252
+
253
+ analyze_btn = gr.Button(
254
+ "🚀 ULTRA SUPREME ANALYSIS",
255
+ variant="primary",
256
+ size="lg"
257
+ )
258
+
259
+ gr.Markdown("""
260
+ ### 🔬 Maximum Absolute Intelligence
261
+
262
+ **🚀 Triple CLIP Interrogation:**
263
+ • Fast analysis for broad contextual mapping
264
+ • Classic analysis for detailed feature extraction
265
+ • Best analysis for maximum depth intelligence
266
+
267
+ **🧠 Ultra Deep Feature Extraction:**
268
+ • Micro-age detection with confidence scoring
269
+ • Cultural/religious context with semantic analysis
270
+ • Facial micro-features and expression mapping
271
+ • Emotional state and micro-expression detection
272
+ • Environmental lighting and atmospheric analysis
273
+ • Body language and pose interpretation
274
+ • Technical photography optimization
275
+
276
+ **⚡ Absolute Maximum Intelligence** - No configuration, no limits, no compromise.
277
+ """)
278
+
279
+ with gr.Column(scale=1):
280
+ gr.Markdown("## ⚡ Ultra Supreme Result")
281
+
282
+ prompt_output = gr.Textbox(
283
+ label="🚀 Ultra Supreme Optimized Flux Prompt",
284
+ placeholder="Upload an image to witness absolute maximum intelligence analysis...",
285
+ lines=12,
286
+ max_lines=20,
287
+ elem_classes=["prompt-output"],
288
+ show_copy_button=True
289
+ )
290
+
291
+ score_output = gr.HTML(
292
+ value='<div style="text-align: center; padding: 1rem;"><div style="font-size: 2rem; color: #ccc;">--</div><div style="font-size: 0.875rem; color: #999;">Ultra Supreme Score</div></div>'
293
+ )
294
+
295
+ info_output = gr.Markdown(value="")
296
+
297
+ clear_btn = gr.Button("🗑️ Clear Ultra Analysis", size="sm")
298
 
299
+ # Event handlers
300
+ analyze_btn.click(
301
+ fn=process_ultra_supreme_analysis,
302
+ inputs=[image_input],
303
+ outputs=[prompt_output, info_output, score_output]
304
+ )
305
 
306
+ clear_btn.click(
307
+ fn=clear_outputs,
308
+ outputs=[prompt_output, info_output, score_output]
309
+ )
310
 
311
+ gr.Markdown("""
312
+ ---
313
+ ### 🏆 Ultra Supreme Research Foundation
314
 
315
+ This system represents the **absolute pinnacle** of image analysis and Flux prompt optimization. Using triple CLIP interrogation,
316
+ ultra-deep feature extraction, cultural context awareness, and emotional intelligence mapping, it achieves maximum possible
317
+ understanding and applies research-validated Flux rules with supreme intelligence.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
318
 
319
+ **🔬 Pariente AI Research Laboratory** • **🚀 Ultra Supreme Intelligence Engine**
320
+ """)
321
+
322
+ return interface
323
+
324
+
325
+ # Main execution
326
+ if __name__ == "__main__":
327
+ demo = create_interface()
328
+ demo.launch(
329
+ server_name="0.0.0.0",
330
+ server_port=7860,
331
+ share=True,
332
+ show_error=True
333
+ )