Spaces:
Running
on
Zero
Running
on
Zero
File size: 19,201 Bytes
be92860 7ab7e54 84abbe3 be92860 7ab7e54 be92860 139d89b 7ab7e54 be92860 7ab7e54 84abbe3 be92860 7ab7e54 be92860 7ab7e54 84abbe3 7ab7e54 3d9a188 7ab7e54 be92860 7ab7e54 84abbe3 7ab7e54 3f01bc9 7ab7e54 84abbe3 7ab7e54 84abbe3 7ab7e54 b9c8ca4 3d9a188 84abbe3 7ab7e54 84abbe3 7ab7e54 be92860 7ab7e54 84abbe3 7ab7e54 84abbe3 7ab7e54 3d9a188 7ab7e54 3f01bc9 7ab7e54 3f01bc9 7ab7e54 be92860 3d9a188 84abbe3 b9c8ca4 84abbe3 3d9a188 84abbe3 3d9a188 84abbe3 b9c8ca4 84abbe3 b9c8ca4 7ab7e54 84abbe3 7ab7e54 3d9a188 7ab7e54 3d9a188 7ab7e54 84abbe3 7ab7e54 84abbe3 3d9a188 84abbe3 7ab7e54 84abbe3 d99e44d 84abbe3 d99e44d 84abbe3 d99e44d 84abbe3 d99e44d 7ab7e54 b9c8ca4 7ab7e54 d99e44d 84abbe3 7ab7e54 3d9a188 7ab7e54 be92860 d99e44d 84abbe3 d99e44d be92860 3d9a188 be92860 d99e44d be92860 d99e44d 84abbe3 d99e44d 84abbe3 d99e44d 84abbe3 d99e44d 7ab7e54 d99e44d 3f01bc9 d99e44d 3f01bc9 d99e44d 84abbe3 d99e44d 7ab7e54 d99e44d 7ab7e54 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 |
"""
Ultra Supreme Optimizer - Main optimization engine for image analysis
VERSIÓN FLORENCE-2 - Usa Florence-2 en lugar de CLIP Interrogator
"""
# IMPORTANT: spaces must be imported BEFORE torch or any CUDA-using library
import spaces
import gc
import logging
import re
from datetime import datetime
from typing import Tuple, Dict, Any, Optional
import torch
import numpy as np
from PIL import Image
from transformers import AutoProcessor, AutoModelForCausalLM
from analyzer import UltraSupremeAnalyzer
logger = logging.getLogger(__name__)
class UltraSupremeOptimizer:
"""Main optimizer class for ultra supreme image analysis"""
def __init__(self):
self.processor = None
self.model = None
self.analyzer = UltraSupremeAnalyzer()
self.usage_count = 0
self.device = self._get_device()
self.is_initialized = False
@staticmethod
def _get_device() -> str:
"""Determine the best available device for computation"""
if torch.cuda.is_available():
return "cuda"
elif torch.backends.mps.is_available():
return "mps"
else:
return "cpu"
def initialize_model(self) -> bool:
"""Initialize Florence-2 model"""
if self.is_initialized:
return True
try:
logger.info("Loading Florence-2 model...")
# Load Florence-2 base model (you can also use 'microsoft/Florence-2-large' for better quality)
model_id = "microsoft/Florence-2-base"
self.processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
self.model = AutoModelForCausalLM.from_pretrained(
model_id,
trust_remote_code=True,
torch_dtype=torch.float16 if self.device == "cuda" else torch.float32
)
# Keep model on CPU initially
self.model = self.model.to("cpu")
self.model.eval()
self.is_initialized = True
# Clean up memory after initialization
gc.collect()
logger.info("Florence-2 model initialized successfully")
return True
except Exception as e:
logger.error(f"Model initialization error: {e}")
return False
def optimize_image(self, image: Any) -> Optional[Image.Image]:
"""Optimize image for processing"""
if image is None:
return None
try:
# Convert to PIL Image if necessary
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
elif not isinstance(image, Image.Image):
image = Image.open(image)
# Convert to RGB if necessary
if image.mode != 'RGB':
image = image.convert('RGB')
# Florence-2 handles various sizes well, but let's be reasonable
max_size = 1024
if image.size[0] > max_size or image.size[1] > max_size:
image.thumbnail((max_size, max_size), Image.Resampling.LANCZOS)
return image
except Exception as e:
logger.error(f"Image optimization error: {e}")
return None
def apply_flux_rules(self, base_prompt: str) -> str:
"""Aplica las reglas de Flux a un prompt base"""
# Limpiar el prompt de elementos no deseados
cleanup_patterns = [
r',\s*trending on artstation',
r',\s*trending on [^,]+',
r',\s*\d+k\s*',
r',\s*\d+k resolution',
r',\s*artstation',
r',\s*concept art',
r',\s*digital art',
r',\s*by greg rutkowski',
]
cleaned_prompt = base_prompt
for pattern in cleanup_patterns:
cleaned_prompt = re.sub(pattern, '', cleaned_prompt, flags=re.IGNORECASE)
# Detectar el tipo de imagen para añadir configuración de cámara apropiada
camera_config = ""
if any(word in base_prompt.lower() for word in ['portrait', 'person', 'man', 'woman', 'face']):
camera_config = ", Shot on Hasselblad X2D 100C, 90mm f/2.5 lens at f/2.8, professional portrait photography"
elif any(word in base_prompt.lower() for word in ['landscape', 'mountain', 'nature', 'outdoor']):
camera_config = ", Shot on Phase One XT, 40mm f/4 lens at f/8, epic landscape photography"
elif any(word in base_prompt.lower() for word in ['street', 'urban', 'city']):
camera_config = ", Shot on Leica M11, 35mm f/1.4 lens at f/2.8, documentary street photography"
else:
camera_config = ", Shot on Phase One XF IQ4, 80mm f/2.8 lens at f/4, professional photography"
# Añadir mejoras de iluminación si no están presentes
if 'lighting' not in cleaned_prompt.lower():
if 'dramatic' in cleaned_prompt.lower():
cleaned_prompt += ", dramatic cinematic lighting"
elif 'portrait' in cleaned_prompt.lower():
cleaned_prompt += ", professional studio lighting with subtle rim light"
else:
cleaned_prompt += ", masterful natural lighting"
# Construir el prompt final
final_prompt = cleaned_prompt + camera_config
# Asegurar que empiece con mayúscula
final_prompt = final_prompt[0].upper() + final_prompt[1:] if final_prompt else final_prompt
# Limpiar espacios y comas duplicadas
final_prompt = re.sub(r'\s+', ' ', final_prompt)
final_prompt = re.sub(r',\s*,+', ',', final_prompt)
return final_prompt
@spaces.GPU(duration=60)
def run_florence_inference(self, image: Image.Image) -> Tuple[str, str, str]:
"""Run Florence-2 inference on GPU"""
try:
# Move model to GPU
self.model = self.model.to("cuda")
logger.info("Florence-2 model moved to GPU")
# Task prompts for different types of analysis
tasks = {
"detailed_caption": "<DETAILED_CAPTION>",
"more_detailed_caption": "<MORE_DETAILED_CAPTION>",
"caption": "<CAPTION>",
"dense_region_caption": "<DENSE_REGION_CAPTION>"
}
results = {}
# Run different captioning tasks
for task_name, task_prompt in tasks.items():
try:
inputs = self.processor(text=task_prompt, images=image, return_tensors="pt")
inputs = {k: v.to("cuda") for k, v in inputs.items()}
with torch.cuda.amp.autocast(dtype=torch.float16):
generated_ids = self.model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=1024,
num_beams=3,
do_sample=False
)
generated_text = self.processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
parsed = self.processor.post_process_generation(generated_text, task=task_prompt, image_size=(image.width, image.height))
# Extract the caption from the parsed result
if task_prompt in parsed:
results[task_name] = parsed[task_prompt]
else:
# Sometimes the result is directly in the parsed output
results[task_name] = str(parsed) if parsed else ""
except Exception as e:
logger.warning(f"Error in {task_name}: {e}")
results[task_name] = ""
# Extract results
detailed_caption = results.get("detailed_caption", "")
more_detailed = results.get("more_detailed_caption", "")
caption = results.get("caption", "")
# Combine for a comprehensive description
if more_detailed:
full_prompt = more_detailed
elif detailed_caption:
full_prompt = detailed_caption
else:
full_prompt = caption
# Use different levels as our three outputs
clip_fast = caption if caption else "A photograph"
clip_classic = detailed_caption if detailed_caption else full_prompt
clip_best = more_detailed if more_detailed else full_prompt
logger.info(f"Florence-2 captions generated successfully")
return full_prompt, clip_fast, clip_classic
except Exception as e:
logger.error(f"Florence-2 inference error: {e}")
# Move model back to CPU to free GPU memory
self.model = self.model.to("cpu")
raise e
finally:
# Always move model back to CPU after inference
self.model = self.model.to("cpu")
torch.cuda.empty_cache()
def generate_ultra_supreme_prompt(self, image: Any) -> Tuple[str, str, int, Dict[str, int]]:
"""
Generate ultra supreme prompt from image usando Florence-2
Returns:
Tuple of (prompt, analysis_info, score, breakdown)
"""
try:
# Inicializar modelo si no está inicializado
if not self.is_initialized:
if not self.initialize_model():
return "❌ Model initialization failed.", "Please refresh and try again.", 0, {}
# Validate input
if image is None:
return "❌ Please upload an image.", "No image provided.", 0, {}
self.usage_count += 1
# Optimize image
image = self.optimize_image(image)
if image is None:
return "❌ Image processing failed.", "Invalid image format.", 0, {}
start_time = datetime.now()
logger.info("ULTRA SUPREME ANALYSIS - Starting with Florence-2")
# Ejecutar inferencia Florence-2
try:
full_prompt, caption_fast, caption_detailed = self.run_florence_inference(image)
except Exception as e:
logger.error(f"Florence-2 failed: {e}")
# Fallback básico
full_prompt = "A photograph"
caption_fast = "image"
caption_detailed = "detailed image"
logger.info(f"Florence-2 caption: {full_prompt[:100]}...")
# Ejecutar análisis ultra supremo con múltiples modelos
logger.info("Running multi-model ultra supreme analysis...")
ultra_analysis = self.analyzer.ultra_supreme_analysis(
image, caption_fast, caption_detailed, full_prompt
)
# Construir prompt mejorado basado en análisis completo
enhanced_prompt_parts = []
# Base prompt de Florence
enhanced_prompt_parts.append(full_prompt)
# Agregar información demográfica si está disponible
if ultra_analysis["demographic"]["gender"] and ultra_analysis["demographic"]["gender_confidence"] > 0.7:
gender = ultra_analysis["demographic"]["gender"]
age_cat = ultra_analysis["demographic"]["age_category"]
if age_cat:
enhanced_prompt_parts.append(f"{age_cat} {gender}")
# Agregar estado emocional principal
if ultra_analysis["emotional_state"]["primary_emotion"] and ultra_analysis["emotional_state"]["emotion_confidence"] > 0.6:
emotion = ultra_analysis["emotional_state"]["primary_emotion"]
enhanced_prompt_parts.append(f"{emotion} expression")
# Agregar información de pose si está disponible
if ultra_analysis["pose_composition"]["posture"]:
enhanced_prompt_parts.append(ultra_analysis["pose_composition"]["posture"][0])
# Combinar y aplicar reglas de Flux
combined_prompt = ", ".join(enhanced_prompt_parts)
optimized_prompt = self.apply_flux_rules(combined_prompt)
# Si el analyzer enriqueció el prompt, úsalo
analyzer_prompt = self.analyzer.build_ultra_supreme_prompt(ultra_analysis, [full_prompt])
if len(analyzer_prompt) > len(optimized_prompt):
optimized_prompt = self.apply_flux_rules(analyzer_prompt)
# Calcular score usando el analyzer
score, breakdown = self.analyzer.calculate_ultra_supreme_score(optimized_prompt, ultra_analysis)
end_time = datetime.now()
duration = (end_time - start_time).total_seconds()
# Memory cleanup
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
# Generate enhanced analysis report con datos de múltiples modelos
analysis_info = self._generate_ultra_analysis_report(
ultra_analysis, score, breakdown, duration, "Florence-2"
)
return optimized_prompt, analysis_info, score, breakdown
except Exception as e:
logger.error(f"Ultra supreme generation error: {e}", exc_info=True)
return f"❌ Error: {str(e)}", "Please try with a different image.", 0, {}
def _generate_ultra_analysis_report(self, analysis: Dict[str, Any],
score: int, breakdown: Dict[str, int],
duration: float, caption_model: str = "Florence-2") -> str:
"""Generate ultra detailed analysis report with multi-model results"""
device_used = "cuda" if torch.cuda.is_available() else "cpu"
gpu_status = "⚡ ZeroGPU" if device_used == "cuda" else "💻 CPU"
# Demographic info
demo_info = ""
if analysis["demographic"]["age_category"]:
age = analysis["demographic"]["age_category"].replace("_", " ").title()
gender = analysis["demographic"]["gender"] or "person"
confidence = analysis["demographic"]["age_confidence"]
demo_info = f"**Detected:** {age} {gender} (confidence: {confidence:.0%})"
# Emotion info
emotion_info = ""
if analysis["emotional_state"]["primary_emotion"]:
emotion = analysis["emotional_state"]["primary_emotion"]
confidence = analysis["emotional_state"]["emotion_confidence"]
emotion_info = f"**Primary Emotion:** {emotion} ({confidence:.0%})"
# Add emotion distribution if available
if analysis["emotional_state"]["emotion_distribution"]:
top_emotions = sorted(
analysis["emotional_state"]["emotion_distribution"].items(),
key=lambda x: x[1], reverse=True
)[:3]
emotion_details = ", ".join([f"{e[0]}: {e[1]:.0%}" for e in top_emotions])
emotion_info += f"\n**Emotion Distribution:** {emotion_details}"
# Face analysis info
face_info = f"**Faces Detected:** {analysis['facial_ultra']['face_count']}"
if analysis['facial_ultra']['face_count'] > 0:
features = []
for feature_type in ['eyes', 'mouth', 'facial_hair', 'skin']:
if analysis['facial_ultra'].get(feature_type):
features.extend(analysis['facial_ultra'][feature_type])
if features:
face_info += f"\n**Facial Features:** {', '.join(features[:5])}"
# Pose info
pose_info = ""
if analysis["pose_composition"].get("pose_confidence", 0) > 0:
confidence = analysis["pose_composition"]["pose_confidence"]
pose_info = f"**Pose Analysis:** Body detected ({confidence:.0%} confidence)"
if analysis["pose_composition"]["posture"]:
pose_info += f"\n**Posture:** {', '.join(analysis['pose_composition']['posture'])}"
# Environment info
env_info = ""
if analysis["environmental"]["setting_type"]:
env_info = f"**Setting:** {analysis['environmental']['setting_type'].replace('_', ' ').title()}"
if analysis["environmental"]["lighting_analysis"]:
env_info += f"\n**Lighting:** {', '.join(analysis['environmental']['lighting_analysis'])}"
# Intelligence metrics
metrics = analysis["intelligence_metrics"]
# Caption info
caption_info = analysis.get("clip_best", "")[:150] + "..." if len(analysis.get("clip_best", "")) > 150 else analysis.get("clip_best", "")
analysis_info = f"""**🚀 ULTRA SUPREME MULTI-MODEL ANALYSIS COMPLETE**
**Processing:** {gpu_status} • {duration:.1f}s • {caption_model} + Multi-Model Pipeline
**Ultra Score:** {score}/100 • Models: {caption_model} + DeepFace + MediaPipe + Transformers
**📊 BREAKDOWN:**
• Prompt Quality: {breakdown.get('prompt_quality', 0)}/25
• Analysis Depth: {breakdown.get('analysis_depth', 0)}/25
• Model Confidence: {breakdown.get('model_confidence', 0)}/25
• Feature Richness: {breakdown.get('feature_richness', 0)}/25
**📝 VISION-LANGUAGE ANALYSIS:**
**{caption_model} Caption:** {caption_info}
**🧠 DEEP ANALYSIS RESULTS:**
**👤 DEMOGRAPHICS & IDENTITY:**
{demo_info or "No face detected for demographic analysis"}
**😊 EMOTIONAL ANALYSIS:**
{emotion_info or "No emotional data available"}
**👁️ FACIAL ANALYSIS:**
{face_info}
**🚶 POSE & BODY LANGUAGE:**
{pose_info or "No pose data available"}
**🏞️ ENVIRONMENT & SCENE:**
{env_info or "No environmental data detected"}
**📊 INTELLIGENCE METRICS:**
• **Total Features Detected:** {metrics['total_features_detected']}
• **Analysis Depth Score:** {metrics['analysis_depth_score']}/100
• **Model Confidence Average:** {metrics['model_confidence_average']:.0%}
• **Technical Optimization:** {metrics['technical_optimization_score']}/100
**✨ MULTI-MODEL ADVANTAGES:**
✅ {caption_model}: State-of-the-art vision-language understanding
✅ DeepFace: Accurate age, gender, emotion detection
✅ MediaPipe: Body pose and gesture analysis
✅ Transformers: Advanced emotion classification
✅ OpenCV: Robust face detection
**🔬 Powered by Pariente AI Research • Ultra Supreme Intelligence Engine**"""
return analysis_info |