File size: 7,878 Bytes
36459c4
6eaa3dc
e2b7de3
 
 
36459c4
e2b7de3
 
 
 
221e826
 
e2b7de3
221e826
13ed916
e2b7de3
 
 
 
13ed916
e2b7de3
 
13ed916
e2b7de3
952210b
e2b7de3
 
6eaa3dc
e2b7de3
 
684911e
e2b7de3
 
0d752e6
e2b7de3
 
 
 
0d752e6
e2b7de3
 
8846627
e2b7de3
 
 
 
 
 
 
221e826
e2b7de3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08fef74
e2b7de3
 
221e826
e2b7de3
 
 
 
 
 
36459c4
e2b7de3
 
 
 
 
 
221e826
e2b7de3
 
36459c4
e2b7de3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36459c4
e2b7de3
 
36459c4
e2b7de3
 
36459c4
e2b7de3
 
36459c4
e2b7de3
36459c4
 
e2b7de3
36459c4
221e826
 
e2b7de3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import gradio as gr
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.ensemble import IsolationForest
from datetime import datetime, timedelta
import os
import logging
from reportlab.lib.pagesizes import letter
from reportlab.pdfgen import canvas
import tempfile

# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')

def process_files(uploaded_files):
    """
    Process uploaded CSV files, generate usage plots, detect anomalies, and process AMC expiries.
    Returns a dataframe, plot, PDF path, and status message.
    """
    if not uploaded_files:
        logging.warning("No files uploaded.")
        return None, None, None, "Please upload at least one valid CSV file."

    valid_files = [f for f in uploaded_files if f.name.endswith('.csv')]
    if not valid_files:
        logging.warning("No valid CSV files uploaded.")
        return None, None, None, "Please upload at least one valid CSV file."

    logging.info(f"Processing {len(valid_files)} valid files: {[f.name for f in valid_files]}")
    all_data = []

    # Load and combine CSV files
    for file in valid_files:
        try:
            logging.info(f"Loading logs from {file.name}")
            df = pd.read_csv(file.name)
            logging.info(f"Loaded {len(df)} records from {file.name}")
            all_data.append(df)
        except Exception as e:
            logging.error(f"Failed to load {file.name}: {str(e)}")
            return None, None, None, f"Error loading {file.name}: {str(e)}"

    if not all_data:
        logging.warning("No data loaded from uploaded files.")
        return None, None, None, "No valid data found in uploaded files."

    combined_df = pd.concat(all_data, ignore_index=True)
    logging.info(f"Combined {len(combined_df)} total records.")
    logging.info(f"CSV columns: {combined_df.columns.tolist()}")

    # Generate usage plot
    plot_path = generate_usage_plot(combined_df)
    
    # Detect anomalies
    anomaly_df = detect_anomalies(combined_df)
    
    # Process AMC expiries
    amc_message, amc_df = process_amc_expiries(combined_df)
    
    # Generate PDF report
    pdf_path = generate_pdf_report(combined_df, anomaly_df, amc_df)
    
    # Prepare output dataframe (combine original data with anomalies)
    output_df = combined_df.copy()
    if anomaly_df is not None:
        output_df['anomaly'] = anomaly_df['anomaly']
    
    return output_df, plot_path, pdf_path, amc_message

def generate_usage_plot(df):
    """
    Generate a bar plot of usage_count by equipment and status.
    Returns the path to the saved plot.
    """
    logging.info("Generating usage plot...")
    try:
        plt.figure(figsize=(10, 6))
        for status in df['status'].unique():
            subset = df[df['status'] == status]
            plt.bar(subset['equipment'] + f" ({status})", subset['usage_count'], label=status)
        plt.xlabel("Equipment (Status)")
        plt.ylabel("Usage Count")
        plt.title("Usage Count by Equipment and Status")
        plt.legend()
        plt.xticks(rotation=45)
        plt.tight_layout()
        
        # Save plot to temporary file
        with tempfile.NamedTemporaryFile(delete=False, suffix='.png') as tmp:
            plt.savefig(tmp.name, format='png')
            plot_path = tmp.name
        plt.close()
        logging.info("Usage plot generated successfully.")
        return plot_path
    except Exception as e:
        logging.error(f"Failed to generate usage plot: {str(e)}")
        return None

def detect_anomalies(df):
    """
    Detect anomalies in usage_count using Isolation Forest.
    Returns a dataframe with an 'anomaly' column (-1 for anomalies, 1 for normal).
    """
    logging.info("Detecting anomalies...")
    try:
        model = IsolationForest(contamination=0.1, random_state=42)
        anomalies = model.fit_predict(df[['usage_count']].values)
        anomaly_df = df.copy()
        anomaly_df['anomaly'] = anomalies
        logging.info(f"Detected {sum(anomalies == -1)} anomalies.")
        return anomaly_df
    except Exception as e:
        logging.error(f"Failed to detect anomalies: {str(e)}")
        return None

def process_amc_expiries(df):
    """
    Identify devices with AMC expiries within 7 days from 2025-06-05.
    Returns a message and a dataframe of devices with upcoming expiries.
    """
    logging.info("Processing AMC expiries...")
    try:
        current_date = datetime(2025, 6, 5)
        threshold = current_date + timedelta(days=7)
        df['amc_expiry'] = pd.to_datetime(df['amc_expiry'])
        upcoming_expiries = df[df['amc_expiry'] <= threshold]
        unique_devices = upcoming_expiries['equipment'].unique()
        message = f"Found {len(unique_devices)} devices with upcoming AMC expiries: {', '.join(unique_devices)}"
        logging.info(message)
        return message, upcoming_expiries
    except Exception as e:
        logging.error(f"Failed to process AMC expiries: {str(e)}")
        return f"Error processing AMC expiries: {str(e)}", None

def generate_pdf_report(original_df, anomaly_df, amc_df):
    """
    Generate a PDF report with data summary, anomalies, and AMC expiries.
    Returns the path to the saved PDF.
    """
    logging.info("Generating PDF report...")
    try:
        with tempfile.NamedTemporaryFile(delete=False, suffix='.pdf') as tmp:
            c = canvas.Canvas(tmp.name, pagesize=letter)
            c.drawString(100, 750, "Equipment Log Analysis Report")
            y = 700
            
            # Summary
            c.drawString(100, y, f"Total Records: {len(original_df)}")
            c.drawString(100, y-20, f"Devices: {', '.join(original_df['equipment'].unique())}")
            y -= 40
            
            # Anomalies
            if anomaly_df is not None:
                num_anomalies = sum(anomaly_df['anomaly'] == -1)
                c.drawString(100, y, f"Anomalies Detected: {num_anomalies}")
                if num_anomalies > 0:
                    anomaly_equipment = anomaly_df[anomaly_df['anomaly'] == -1]['equipment'].unique()
                    c.drawString(100, y-20, f"Anomalous Devices: {', '.join(anomaly_equipment)}")
                y -= 40
            else:
                c.drawString(100, y, "Anomaly detection failed.")
                y -= 20
            
            # AMC Expiries
            if amc_df is not None:
                c.drawString(100, y, f"Devices with Upcoming AMC Expiries: {len(amc_df['equipment'].unique())}")
                for _, row in amc_df.iterrows():
                    c.drawString(100, y-20, f"{row['equipment']}: {row['amc_expiry'].strftime('%Y-%m-%d')}")
                    y -= 20
            else:
                c.drawString(100, y, "No AMC expiry data available.")
                y -= 20
            
            c.showPage()
            c.save()
            pdf_path = tmp.name
        logging.info("PDF report generated successfully.")
        return pdf_path
    except Exception as e:
        logging.error(f"Failed to generate PDF report: {str(e)}")
        return None

# Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("# Equipment Log Analysis")
    with gr.Row():
        file_input = gr.File(file_count="multiple", label="Upload CSV Files")
        process_button = gr.Button("Process Files")
    with gr.Row():
        output_df = gr.Dataframe(label="Processed Data")
        output_plot = gr.Image(label="Usage Plot")
    with gr.Row():
        output_message = gr.Textbox(label="AMC Expiry Status")
        output_pdf = gr.File(label="Download PDF Report")
    
    process_button.click(
        fn=process_files,
        inputs=[file_input],
        outputs=[output_df, output_plot, output_pdf, output_message]
    )

if __name__ == "__main__":
    demo.launch(server_name="0.0.0.0", server_port=7860)