Update app.py
Browse files
app.py
CHANGED
|
@@ -1,144 +1,203 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import pandas as pd
|
| 3 |
-
|
| 4 |
-
from
|
| 5 |
-
from
|
| 6 |
-
from models.anomaly import detect_anomalies
|
| 7 |
-
from utils.amc import upcoming_amc_devices
|
| 8 |
-
import logging
|
| 9 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
# Configure logging
|
| 12 |
-
logging.basicConfig(level=logging.INFO, format=
|
| 13 |
-
logger = logging.getLogger(__name__)
|
| 14 |
|
| 15 |
def process_files(uploaded_files):
|
| 16 |
-
"""
|
| 17 |
-
|
| 18 |
-
|
|
|
|
| 19 |
if not uploaded_files:
|
| 20 |
-
|
| 21 |
-
return "Please upload at least one valid CSV file."
|
| 22 |
-
|
| 23 |
-
# Flatten the structure: uploaded_files might be (['path'],) or ['path']
|
| 24 |
-
if isinstance(uploaded_files, (tuple, list)) and len(uploaded_files) > 0:
|
| 25 |
-
if isinstance(uploaded_files[0], list):
|
| 26 |
-
valid_files = uploaded_files[0] # Extract the inner list
|
| 27 |
-
else:
|
| 28 |
-
valid_files = uploaded_files
|
| 29 |
-
else:
|
| 30 |
-
valid_files = []
|
| 31 |
|
| 32 |
-
|
| 33 |
-
valid_files = [f for f in valid_files if f is not None]
|
| 34 |
if not valid_files:
|
| 35 |
-
|
| 36 |
-
return "Please upload at least one valid CSV file."
|
| 37 |
-
|
| 38 |
-
logger.info(f"Processing {len(valid_files)} valid files: {valid_files}")
|
| 39 |
-
try:
|
| 40 |
-
# Load data
|
| 41 |
-
df = load_logs(valid_files)
|
| 42 |
-
logger.info(f"Loaded {len(df)} log records from uploaded files.")
|
| 43 |
|
| 44 |
-
|
| 45 |
-
|
| 46 |
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
fig = plot_usage(df)
|
| 50 |
-
logger.info("Usage plot generated successfully.")
|
| 51 |
-
|
| 52 |
-
# Anomalies
|
| 53 |
-
anomaly_table = "Anomaly detection failed."
|
| 54 |
try:
|
| 55 |
-
|
| 56 |
-
|
|
|
|
|
|
|
| 57 |
except Exception as e:
|
| 58 |
-
|
|
|
|
| 59 |
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
else:
|
| 68 |
-
amc_table = "Column `amc_expiry` not found in uploaded data."
|
| 69 |
-
logger.warning("Missing `amc_expiry` column in data.")
|
| 70 |
-
except Exception as e:
|
| 71 |
-
logger.error(f"AMC processing failed: {e}")
|
| 72 |
-
amc_table = f"Error processing AMC expiries: {e}"
|
| 73 |
|
| 74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
except Exception as e:
|
| 76 |
-
|
| 77 |
-
return
|
| 78 |
|
| 79 |
-
def
|
| 80 |
-
"""
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
try:
|
| 86 |
-
|
| 87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
except Exception as e:
|
| 89 |
-
|
| 90 |
-
return None
|
| 91 |
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
with
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
with gr.Row():
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
log_output = gr.Dataframe()
|
| 105 |
-
with gr.Column():
|
| 106 |
-
gr.Markdown("## 📈 Daily Usage Chart")
|
| 107 |
-
chart_output = gr.Plot()
|
| 108 |
-
|
| 109 |
with gr.Row():
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
anomaly_output = gr.Dataframe()
|
| 113 |
-
with gr.Column():
|
| 114 |
-
gr.Markdown("## 🛠 Upcoming AMC Devices")
|
| 115 |
-
amc_output = gr.Dataframe()
|
| 116 |
-
|
| 117 |
with gr.Row():
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
pdf_message = gr.Textbox(label="PDF Generation Status")
|
| 121 |
|
| 122 |
-
|
| 123 |
-
df_state = gr.State()
|
| 124 |
-
|
| 125 |
-
# Connect inputs to outputs
|
| 126 |
-
submit_btn.click(
|
| 127 |
fn=process_files,
|
| 128 |
inputs=[file_input],
|
| 129 |
-
outputs=[
|
| 130 |
-
)
|
| 131 |
-
|
| 132 |
-
pdf_btn.click(
|
| 133 |
-
fn=generate_pdf_report,
|
| 134 |
-
inputs=[df_state],
|
| 135 |
-
outputs=[pdf_output, pdf_message]
|
| 136 |
)
|
| 137 |
|
| 138 |
if __name__ == "__main__":
|
| 139 |
-
|
| 140 |
-
logger.info("Application starting...")
|
| 141 |
-
demo.launch(server_name="0.0.0.0", server_port=7860)
|
| 142 |
-
except Exception as e:
|
| 143 |
-
logger.error(f"Application failed to start: {e}")
|
| 144 |
-
raise
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import pandas as pd
|
| 3 |
+
import matplotlib.pyplot as plt
|
| 4 |
+
from sklearn.ensemble import IsolationForest
|
| 5 |
+
from datetime import datetime, timedelta
|
|
|
|
|
|
|
|
|
|
| 6 |
import os
|
| 7 |
+
import logging
|
| 8 |
+
from reportlab.lib.pagesizes import letter
|
| 9 |
+
from reportlab.pdfgen import canvas
|
| 10 |
+
import tempfile
|
| 11 |
|
| 12 |
# Configure logging
|
| 13 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
|
|
|
| 14 |
|
| 15 |
def process_files(uploaded_files):
|
| 16 |
+
"""
|
| 17 |
+
Process uploaded CSV files, generate usage plots, detect anomalies, and process AMC expiries.
|
| 18 |
+
Returns a dataframe, plot, PDF path, and status message.
|
| 19 |
+
"""
|
| 20 |
if not uploaded_files:
|
| 21 |
+
logging.warning("No files uploaded.")
|
| 22 |
+
return None, None, None, "Please upload at least one valid CSV file."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
+
valid_files = [f for f in uploaded_files if f.name.endswith('.csv')]
|
|
|
|
| 25 |
if not valid_files:
|
| 26 |
+
logging.warning("No valid CSV files uploaded.")
|
| 27 |
+
return None, None, None, "Please upload at least one valid CSV file."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
+
logging.info(f"Processing {len(valid_files)} valid files: {[f.name for f in valid_files]}")
|
| 30 |
+
all_data = []
|
| 31 |
|
| 32 |
+
# Load and combine CSV files
|
| 33 |
+
for file in valid_files:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
try:
|
| 35 |
+
logging.info(f"Loading logs from {file.name}")
|
| 36 |
+
df = pd.read_csv(file.name)
|
| 37 |
+
logging.info(f"Loaded {len(df)} records from {file.name}")
|
| 38 |
+
all_data.append(df)
|
| 39 |
except Exception as e:
|
| 40 |
+
logging.error(f"Failed to load {file.name}: {str(e)}")
|
| 41 |
+
return None, None, None, f"Error loading {file.name}: {str(e)}"
|
| 42 |
|
| 43 |
+
if not all_data:
|
| 44 |
+
logging.warning("No data loaded from uploaded files.")
|
| 45 |
+
return None, None, None, "No valid data found in uploaded files."
|
| 46 |
+
|
| 47 |
+
combined_df = pd.concat(all_data, ignore_index=True)
|
| 48 |
+
logging.info(f"Combined {len(combined_df)} total records.")
|
| 49 |
+
logging.info(f"CSV columns: {combined_df.columns.tolist()}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
+
# Generate usage plot
|
| 52 |
+
plot_path = generate_usage_plot(combined_df)
|
| 53 |
+
|
| 54 |
+
# Detect anomalies
|
| 55 |
+
anomaly_df = detect_anomalies(combined_df)
|
| 56 |
+
|
| 57 |
+
# Process AMC expiries
|
| 58 |
+
amc_message, amc_df = process_amc_expiries(combined_df)
|
| 59 |
+
|
| 60 |
+
# Generate PDF report
|
| 61 |
+
pdf_path = generate_pdf_report(combined_df, anomaly_df, amc_df)
|
| 62 |
+
|
| 63 |
+
# Prepare output dataframe (combine original data with anomalies)
|
| 64 |
+
output_df = combined_df.copy()
|
| 65 |
+
if anomaly_df is not None:
|
| 66 |
+
output_df['anomaly'] = anomaly_df['anomaly']
|
| 67 |
+
|
| 68 |
+
return output_df, plot_path, pdf_path, amc_message
|
| 69 |
+
|
| 70 |
+
def generate_usage_plot(df):
|
| 71 |
+
"""
|
| 72 |
+
Generate a bar plot of usage_count by equipment and status.
|
| 73 |
+
Returns the path to the saved plot.
|
| 74 |
+
"""
|
| 75 |
+
logging.info("Generating usage plot...")
|
| 76 |
+
try:
|
| 77 |
+
plt.figure(figsize=(10, 6))
|
| 78 |
+
for status in df['status'].unique():
|
| 79 |
+
subset = df[df['status'] == status]
|
| 80 |
+
plt.bar(subset['equipment'] + f" ({status})", subset['usage_count'], label=status)
|
| 81 |
+
plt.xlabel("Equipment (Status)")
|
| 82 |
+
plt.ylabel("Usage Count")
|
| 83 |
+
plt.title("Usage Count by Equipment and Status")
|
| 84 |
+
plt.legend()
|
| 85 |
+
plt.xticks(rotation=45)
|
| 86 |
+
plt.tight_layout()
|
| 87 |
+
|
| 88 |
+
# Save plot to temporary file
|
| 89 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix='.png') as tmp:
|
| 90 |
+
plt.savefig(tmp.name, format='png')
|
| 91 |
+
plot_path = tmp.name
|
| 92 |
+
plt.close()
|
| 93 |
+
logging.info("Usage plot generated successfully.")
|
| 94 |
+
return plot_path
|
| 95 |
except Exception as e:
|
| 96 |
+
logging.error(f"Failed to generate usage plot: {str(e)}")
|
| 97 |
+
return None
|
| 98 |
|
| 99 |
+
def detect_anomalies(df):
|
| 100 |
+
"""
|
| 101 |
+
Detect anomalies in usage_count using Isolation Forest.
|
| 102 |
+
Returns a dataframe with an 'anomaly' column (-1 for anomalies, 1 for normal).
|
| 103 |
+
"""
|
| 104 |
+
logging.info("Detecting anomalies...")
|
| 105 |
try:
|
| 106 |
+
model = IsolationForest(contamination=0.1, random_state=42)
|
| 107 |
+
anomalies = model.fit_predict(df[['usage_count']].values)
|
| 108 |
+
anomaly_df = df.copy()
|
| 109 |
+
anomaly_df['anomaly'] = anomalies
|
| 110 |
+
logging.info(f"Detected {sum(anomalies == -1)} anomalies.")
|
| 111 |
+
return anomaly_df
|
| 112 |
except Exception as e:
|
| 113 |
+
logging.error(f"Failed to detect anomalies: {str(e)}")
|
| 114 |
+
return None
|
| 115 |
|
| 116 |
+
def process_amc_expiries(df):
|
| 117 |
+
"""
|
| 118 |
+
Identify devices with AMC expiries within 7 days from 2025-06-05.
|
| 119 |
+
Returns a message and a dataframe of devices with upcoming expiries.
|
| 120 |
+
"""
|
| 121 |
+
logging.info("Processing AMC expiries...")
|
| 122 |
+
try:
|
| 123 |
+
current_date = datetime(2025, 6, 5)
|
| 124 |
+
threshold = current_date + timedelta(days=7)
|
| 125 |
+
df['amc_expiry'] = pd.to_datetime(df['amc_expiry'])
|
| 126 |
+
upcoming_expiries = df[df['amc_expiry'] <= threshold]
|
| 127 |
+
unique_devices = upcoming_expiries['equipment'].unique()
|
| 128 |
+
message = f"Found {len(unique_devices)} devices with upcoming AMC expiries: {', '.join(unique_devices)}"
|
| 129 |
+
logging.info(message)
|
| 130 |
+
return message, upcoming_expiries
|
| 131 |
+
except Exception as e:
|
| 132 |
+
logging.error(f"Failed to process AMC expiries: {str(e)}")
|
| 133 |
+
return f"Error processing AMC expiries: {str(e)}", None
|
| 134 |
+
|
| 135 |
+
def generate_pdf_report(original_df, anomaly_df, amc_df):
|
| 136 |
+
"""
|
| 137 |
+
Generate a PDF report with data summary, anomalies, and AMC expiries.
|
| 138 |
+
Returns the path to the saved PDF.
|
| 139 |
+
"""
|
| 140 |
+
logging.info("Generating PDF report...")
|
| 141 |
+
try:
|
| 142 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix='.pdf') as tmp:
|
| 143 |
+
c = canvas.Canvas(tmp.name, pagesize=letter)
|
| 144 |
+
c.drawString(100, 750, "Equipment Log Analysis Report")
|
| 145 |
+
y = 700
|
| 146 |
+
|
| 147 |
+
# Summary
|
| 148 |
+
c.drawString(100, y, f"Total Records: {len(original_df)}")
|
| 149 |
+
c.drawString(100, y-20, f"Devices: {', '.join(original_df['equipment'].unique())}")
|
| 150 |
+
y -= 40
|
| 151 |
+
|
| 152 |
+
# Anomalies
|
| 153 |
+
if anomaly_df is not None:
|
| 154 |
+
num_anomalies = sum(anomaly_df['anomaly'] == -1)
|
| 155 |
+
c.drawString(100, y, f"Anomalies Detected: {num_anomalies}")
|
| 156 |
+
if num_anomalies > 0:
|
| 157 |
+
anomaly_equipment = anomaly_df[anomaly_df['anomaly'] == -1]['equipment'].unique()
|
| 158 |
+
c.drawString(100, y-20, f"Anomalous Devices: {', '.join(anomaly_equipment)}")
|
| 159 |
+
y -= 40
|
| 160 |
+
else:
|
| 161 |
+
c.drawString(100, y, "Anomaly detection failed.")
|
| 162 |
+
y -= 20
|
| 163 |
+
|
| 164 |
+
# AMC Expiries
|
| 165 |
+
if amc_df is not None:
|
| 166 |
+
c.drawString(100, y, f"Devices with Upcoming AMC Expiries: {len(amc_df['equipment'].unique())}")
|
| 167 |
+
for _, row in amc_df.iterrows():
|
| 168 |
+
c.drawString(100, y-20, f"{row['equipment']}: {row['amc_expiry'].strftime('%Y-%m-%d')}")
|
| 169 |
+
y -= 20
|
| 170 |
+
else:
|
| 171 |
+
c.drawString(100, y, "No AMC expiry data available.")
|
| 172 |
+
y -= 20
|
| 173 |
+
|
| 174 |
+
c.showPage()
|
| 175 |
+
c.save()
|
| 176 |
+
pdf_path = tmp.name
|
| 177 |
+
logging.info("PDF report generated successfully.")
|
| 178 |
+
return pdf_path
|
| 179 |
+
except Exception as e:
|
| 180 |
+
logging.error(f"Failed to generate PDF report: {str(e)}")
|
| 181 |
+
return None
|
| 182 |
+
|
| 183 |
+
# Gradio interface
|
| 184 |
+
with gr.Blocks() as demo:
|
| 185 |
+
gr.Markdown("# Equipment Log Analysis")
|
| 186 |
with gr.Row():
|
| 187 |
+
file_input = gr.File(file_count="multiple", label="Upload CSV Files")
|
| 188 |
+
process_button = gr.Button("Process Files")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 189 |
with gr.Row():
|
| 190 |
+
output_df = gr.Dataframe(label="Processed Data")
|
| 191 |
+
output_plot = gr.Image(label="Usage Plot")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 192 |
with gr.Row():
|
| 193 |
+
output_message = gr.Textbox(label="AMC Expiry Status")
|
| 194 |
+
output_pdf = gr.File(label="Download PDF Report")
|
|
|
|
| 195 |
|
| 196 |
+
process_button.click(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 197 |
fn=process_files,
|
| 198 |
inputs=[file_input],
|
| 199 |
+
outputs=[output_df, output_plot, output_pdf, output_message]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 200 |
)
|
| 201 |
|
| 202 |
if __name__ == "__main__":
|
| 203 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|