Update app.py
Browse files
app.py
CHANGED
|
@@ -1,199 +1,45 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
import pandas as pd
|
| 3 |
-
|
| 4 |
-
from
|
| 5 |
-
from
|
| 6 |
-
from
|
| 7 |
-
from utils import
|
| 8 |
-
import os
|
| 9 |
-
import logging
|
| 10 |
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
logger = logging.getLogger(__name__)
|
| 14 |
|
| 15 |
-
|
| 16 |
-
try:
|
| 17 |
-
st.set_page_config(page_title="LabOps Dashboard", layout="wide")
|
| 18 |
-
logger.info("Streamlit page configuration set successfully.")
|
| 19 |
-
except Exception as e:
|
| 20 |
-
logger.error(f"Failed to set Streamlit page configuration: {e}")
|
| 21 |
-
raise
|
| 22 |
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
def init_salesforce():
|
| 26 |
-
logger.info("Initializing Salesforce connection...")
|
| 27 |
-
try:
|
| 28 |
-
sf = Salesforce(
|
| 29 |
-
username=os.getenv("SF_USERNAME", st.secrets.get("sf_username")),
|
| 30 |
-
password=os.getenv("SF_PASSWORD", st.secrets.get("sf_password")),
|
| 31 |
-
security_token=os.getenv("SF_SECURITY_TOKEN", st.secrets.get("sf_security_token"))
|
| 32 |
-
)
|
| 33 |
-
logger.info("Salesforce connection initialized successfully.")
|
| 34 |
-
return sf
|
| 35 |
-
except Exception as e:
|
| 36 |
-
logger.error(f"Failed to initialize Salesforce: {e}")
|
| 37 |
-
st.error(f"Cannot connect to Salesforce: {e}")
|
| 38 |
-
return None
|
| 39 |
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
def init_anomaly_detector():
|
| 43 |
-
logger.info("Initializing anomaly detector...")
|
| 44 |
-
try:
|
| 45 |
-
# Use lighter model for Hugging Face Spaces
|
| 46 |
-
detector = pipeline(
|
| 47 |
-
"text-classification",
|
| 48 |
-
model="prajjwal1/bert-tiny",
|
| 49 |
-
tokenizer="prajjwal1/bert-tiny",
|
| 50 |
-
clean_up_tokenization_spaces=True
|
| 51 |
-
)
|
| 52 |
-
logger.info("Anomaly detector initialized successfully.")
|
| 53 |
-
return detector
|
| 54 |
-
except Exception as e:
|
| 55 |
-
logger.error(f"Failed to initialize anomaly detector: {e}")
|
| 56 |
-
st.error(f"Cannot initialize anomaly detector: {e}")
|
| 57 |
-
return None
|
| 58 |
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
anomaly_detector = init_anomaly_detector()
|
| 62 |
|
| 63 |
-
|
| 64 |
-
@st.cache_data(ttl=10)
|
| 65 |
-
def get_filtered_data(lab_site, equipment_type, date_start, date_end):
|
| 66 |
-
logger.info(f"Fetching data for lab: {lab_site}, equipment: {equipment_type}, date range: {date_start} to {date_end}")
|
| 67 |
try:
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
FROM SmartLog__c
|
| 71 |
-
WHERE Log_Timestamp__c >= {date_start.strftime('%Y-%m-%d')}
|
| 72 |
-
AND Log_Timestamp__c <= {date_end.strftime('%Y-%m-%d')}
|
| 73 |
-
"""
|
| 74 |
-
if lab_site != "All":
|
| 75 |
-
query += f" AND Lab__c = '{lab_site}'"
|
| 76 |
-
if equipment_type != "All":
|
| 77 |
-
query += f" AND Equipment_Type__c = '{equipment_type}'"
|
| 78 |
-
query += " LIMIT 100"
|
| 79 |
-
data = fetch_salesforce_data(sf, query)
|
| 80 |
-
logger.info(f"Fetched {len(data)} records from Salesforce.")
|
| 81 |
-
return data
|
| 82 |
except Exception as e:
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
st.title("Multi-Device LabOps Dashboard")
|
| 94 |
-
|
| 95 |
-
# Filters
|
| 96 |
-
col1, col2 = st.columns(2)
|
| 97 |
-
with col1:
|
| 98 |
-
lab_site = st.selectbox("Select Lab Site", ["All", "Lab1", "Lab2", "Lab3"])
|
| 99 |
-
with col2:
|
| 100 |
-
equipment_type = st.selectbox("Equipment Type", ["All", "Cell Analyzer", "Weight Log", "UV Verification"])
|
| 101 |
-
|
| 102 |
-
date_range = st.date_input("Date Range", [datetime.now() - timedelta(days=7), datetime.now()])
|
| 103 |
-
|
| 104 |
-
if len(date_range) != 2:
|
| 105 |
-
st.warning("Please select a valid date range.")
|
| 106 |
-
logger.warning("Invalid date range selected.")
|
| 107 |
-
return
|
| 108 |
-
date_start, date_end = date_range
|
| 109 |
-
|
| 110 |
-
# Fetch and process data
|
| 111 |
-
with st.spinner("Fetching data..."):
|
| 112 |
-
data = get_filtered_data(lab_site, equipment_type, date_start, date_end)
|
| 113 |
-
if not data:
|
| 114 |
-
st.warning("No data available for the selected filters.")
|
| 115 |
-
logger.warning("No data returned for the selected filters.")
|
| 116 |
-
return
|
| 117 |
-
|
| 118 |
-
df = pd.DataFrame(data)
|
| 119 |
-
df["Log_Timestamp__c"] = pd.to_datetime(df["Log_Timestamp__c"])
|
| 120 |
-
df["Anomaly"] = df.apply(
|
| 121 |
-
lambda row: detect_anomalies(f"{row['Status__c']} Usage:{row['Usage_Count__c']}", anomaly_detector),
|
| 122 |
-
axis=1
|
| 123 |
-
)
|
| 124 |
-
|
| 125 |
-
# Pagination
|
| 126 |
-
page_size = 10
|
| 127 |
-
total_pages = max(1, len(df) // page_size + (1 if len(df) % page_size else 0))
|
| 128 |
-
page = st.number_input("Page", min_value=1, max_value=total_pages, value=1, step=1)
|
| 129 |
-
start_idx = (page - 1) * page_size
|
| 130 |
-
end_idx = start_idx + page_size
|
| 131 |
-
paginated_df = df[start_idx:end_idx]
|
| 132 |
-
|
| 133 |
-
# Device Cards
|
| 134 |
-
st.subheader("Device Status")
|
| 135 |
-
for _, row in paginated_df.iterrows():
|
| 136 |
-
anomaly = "β οΈ Anomaly" if row["Anomaly"] == "POSITIVE" else "β
Normal"
|
| 137 |
-
st.markdown(f"""
|
| 138 |
-
**{row['Equipment__c']}** | Lab: {row['Lab__c']} | Health: {row['Status__c']} |
|
| 139 |
-
Usage: {row['Usage_Count__c']} | Last Log: {row['Log_Timestamp__c'].strftime('%Y-%m-%d %H:%M:%S')} | {anomaly}
|
| 140 |
-
""")
|
| 141 |
-
|
| 142 |
-
# Usage Chart
|
| 143 |
-
st.subheader("Usage Trends")
|
| 144 |
-
fig = px.line(
|
| 145 |
-
df,
|
| 146 |
-
x="Log_Timestamp__c",
|
| 147 |
-
y="Usage_Count__c",
|
| 148 |
-
color="Equipment__c",
|
| 149 |
-
title="Daily Usage Trends",
|
| 150 |
-
labels={"Log_Timestamp__c": "Timestamp", "Usage_Count__c": "Usage Count"}
|
| 151 |
-
)
|
| 152 |
-
fig.update_layout(xaxis_title="Timestamp", yaxis_title="Usage Count")
|
| 153 |
-
st.plotly_chart(fig, use_container_width=True)
|
| 154 |
-
|
| 155 |
-
# Downtime Chart
|
| 156 |
-
st.subheader("Downtime Patterns")
|
| 157 |
-
downtime_df = df[df["Status__c"] == "Down"]
|
| 158 |
-
if not downtime_df.empty:
|
| 159 |
-
fig_downtime = px.histogram(
|
| 160 |
-
downtime_df,
|
| 161 |
-
x="Log_Timestamp__c",
|
| 162 |
-
color="Equipment__c",
|
| 163 |
-
title="Downtime Patterns",
|
| 164 |
-
labels={"Log_Timestamp__c": "Timestamp"}
|
| 165 |
-
)
|
| 166 |
-
fig_downtime.update_layout(xaxis_title="Timestamp", yaxis_title="Downtime Count")
|
| 167 |
-
st.plotly_chart(fig_downtime, use_container_width=True)
|
| 168 |
-
else:
|
| 169 |
-
st.info("No downtime events found for the selected filters.")
|
| 170 |
-
|
| 171 |
-
# AMC Reminders
|
| 172 |
-
st.subheader("AMC Reminders")
|
| 173 |
-
amc_query = "SELECT Equipment__c, AMC_Expiry_Date__c FROM Equipment__c WHERE AMC_Expiry_Date__c <= NEXT_N_DAYS:14"
|
| 174 |
-
amc_data = fetch_salesforce_data(sf, amc_query, retries=3)
|
| 175 |
-
if amc_data:
|
| 176 |
-
for record in amc_data:
|
| 177 |
-
st.write(f"Equipment {record['Equipment__c']} - AMC Expiry: {record['AMC_Expiry_Date__c']}")
|
| 178 |
else:
|
| 179 |
-
st.info("
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
st.download_button("Download PDF", f, file_name="LabOps_Report.pdf", mime="application/pdf")
|
| 188 |
-
logger.info("PDF report generated successfully.")
|
| 189 |
-
except Exception as e:
|
| 190 |
-
st.error(f"Failed to generate PDF: {e}")
|
| 191 |
-
logger.error(f"Failed to generate PDF: {e}")
|
| 192 |
-
|
| 193 |
-
if __name__ == "__main__":
|
| 194 |
-
try:
|
| 195 |
-
logger.info("Application starting...")
|
| 196 |
-
main()
|
| 197 |
-
except Exception as e:
|
| 198 |
-
logger.error(f"Application failed to start: {e}")
|
| 199 |
-
raise
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
import pandas as pd
|
| 3 |
+
from utils.load_data import load_logs
|
| 4 |
+
from utils.visualize import plot_usage
|
| 5 |
+
from utils.report import generate_pdf
|
| 6 |
+
from models.anomaly import detect_anomalies
|
| 7 |
+
from utils.amc import upcoming_amc_devices
|
|
|
|
|
|
|
| 8 |
|
| 9 |
+
st.set_page_config(page_title="LabOps Dashboard", layout="wide")
|
| 10 |
+
st.title("π Multi-Device LabOps Dashboard")
|
|
|
|
| 11 |
|
| 12 |
+
uploaded_files = st.file_uploader("Upload Device Logs (CSV)", accept_multiple_files=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
+
if uploaded_files:
|
| 15 |
+
df = load_logs(uploaded_files)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
+
st.subheader("π Uploaded Logs")
|
| 18 |
+
st.dataframe(df.head())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
+
st.subheader("π Daily Usage Chart")
|
| 21 |
+
st.pyplot(plot_usage(df))
|
|
|
|
| 22 |
|
| 23 |
+
st.subheader("π¨ Detected Anomalies")
|
|
|
|
|
|
|
|
|
|
| 24 |
try:
|
| 25 |
+
anomalies = detect_anomalies(df)
|
| 26 |
+
st.dataframe(anomalies)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
except Exception as e:
|
| 28 |
+
st.error(f"Failed to compute anomalies: {e}")
|
| 29 |
+
|
| 30 |
+
st.subheader("π Upcoming AMC Devices")
|
| 31 |
+
if "amc_expiry" in df.columns:
|
| 32 |
+
try:
|
| 33 |
+
amc_df = upcoming_amc_devices(df)
|
| 34 |
+
st.dataframe(amc_df)
|
| 35 |
+
except Exception as e:
|
| 36 |
+
st.error(f"Failed to process AMC dates: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
else:
|
| 38 |
+
st.info("Column `amc_expiry` not found in uploaded data.")
|
| 39 |
+
|
| 40 |
+
if st.button("π Generate PDF Report"):
|
| 41 |
+
try:
|
| 42 |
+
generate_pdf(df)
|
| 43 |
+
st.success("β
PDF report generated and saved to /tmp/labops_report.pdf")
|
| 44 |
+
except Exception as e:
|
| 45 |
+
st.error(f"Failed to generate PDF: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|