Spaces:
Sleeping
Sleeping
# import gradio as gr | |
# from huggingface_hub import InferenceClient | |
# """ | |
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
# """ | |
# client = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct") | |
# ## None type | |
# def respond( | |
# message: str, | |
# history: list[tuple[str, str]], # This will not be used | |
# system_message: str, | |
# max_tokens: int, | |
# temperature: float, | |
# top_p: float, | |
# ): | |
# messages = [{"role": "system", "content": system_message}] | |
# # Append only the latest user message | |
# messages.append({"role": "user", "content": message}) | |
# response = "" | |
# try: | |
# # Generate response from the model | |
# for message in client.chat_completion( | |
# messages, | |
# max_tokens=max_tokens, | |
# stream=True, | |
# temperature=temperature, | |
# top_p=top_p, | |
# ): | |
# if message.choices[0].delta.content is not None: | |
# token = message.choices[0].delta.content | |
# response += token | |
# yield response | |
# except Exception as e: | |
# yield f"An error occurred: {e}" | |
# ], | |
# ) | |
# if __name__ == "__main__": | |
# demo.launch() | |
##Running smothly CHATBOT | |
# import gradio as gr | |
# from huggingface_hub import InferenceClient | |
# """ | |
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
# """ | |
# client = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct") | |
# def respond( | |
# message: str, | |
# history: list[tuple[str, str]], # This will not be used | |
# system_message: str, | |
# max_tokens: int, | |
# temperature: float, | |
# top_p: float, | |
# ): | |
# # Build the messages list | |
# messages = [{"role": "system", "content": system_message}] | |
# messages.append({"role": "user", "content": message}) | |
# response = "" | |
# try: | |
# # Generate response from the model | |
# for msg in client.chat_completion( | |
# messages=messages, | |
# max_tokens=max_tokens, | |
# stream=True, | |
# temperature=temperature, | |
# top_p=top_p, | |
# ): | |
# if msg.choices[0].delta.content is not None: | |
# token = msg.choices[0].delta.content | |
# response += token | |
# yield response | |
# except Exception as e: | |
# yield f"An error occurred: {e}" | |
# """ | |
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
# """ | |
# demo = gr.ChatInterface( | |
# respond, | |
# additional_inputs=[ | |
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
# gr.Slider( | |
# minimum=0.1, | |
# maximum=1.0, | |
# value=0.95, | |
# step=0.05, | |
# label="Top-p (nucleus sampling)", | |
# ), | |
# ], | |
# ) | |
# if __name__ == "__main__": | |
# demo.launch() | |
# Use a pipeline as a high-level helper | |
from transformers import pipeline | |
messages = [ | |
{"role": "user", "content": "Who are you?"}, | |
] | |
pipe = pipeline("text-generation", model="meta-llama/Meta-Llama-3.1-8B-Instruct") | |
pipe(messages) | |
# # Load model directly | |
# from transformers import AutoTokenizer, AutoModelForCausalLM | |
# tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3.1-8B-Instruct") | |
# model = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3.1-8B-Instruct") | |