Spaces:
Sleeping
Sleeping
testing
Browse files
app.py
CHANGED
@@ -113,204 +113,17 @@
|
|
113 |
# demo.launch()
|
114 |
|
115 |
|
116 |
-
|
|
|
117 |
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
# import gradio as gr
|
124 |
-
# from threading import Thread
|
125 |
-
|
126 |
-
# MODEL_LIST = ["meta-llama/Meta-Llama-3.1-8B-Instruct"]
|
127 |
-
# HF_TOKEN = os.environ.get("HF_API_TOKEN", None)
|
128 |
-
# MODEL = os.environ.get("MODEL_ID")
|
129 |
-
|
130 |
-
# TITLE = "<h1><center>Meta-Llama3.1-8B</center></h1>"
|
131 |
-
|
132 |
-
# PLACEHOLDER = """
|
133 |
-
# <center>
|
134 |
-
# <p>Hi! How can I help you today?</p>
|
135 |
-
# </center>
|
136 |
-
# """
|
137 |
-
|
138 |
-
|
139 |
-
# CSS = """
|
140 |
-
# .duplicate-button {
|
141 |
-
# margin: auto !important;
|
142 |
-
# color: white !important;
|
143 |
-
# background: black !important;
|
144 |
-
# border-radius: 100vh !important;
|
145 |
-
# }
|
146 |
-
# h3 {
|
147 |
-
# text-align: center;
|
148 |
-
# }
|
149 |
-
# """
|
150 |
|
151 |
-
#
|
152 |
-
|
153 |
-
# quantization_config = BitsAndBytesConfig(
|
154 |
-
# load_in_4bit=True,
|
155 |
-
# bnb_4bit_compute_dtype=torch.bfloat16,
|
156 |
-
# bnb_4bit_use_double_quant=True,
|
157 |
-
# bnb_4bit_quant_type= "nf4")
|
158 |
-
|
159 |
-
# tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
160 |
-
# model = AutoModelForCausalLM.from_pretrained(
|
161 |
-
# MODEL,
|
162 |
-
# torch_dtype=torch.bfloat16,
|
163 |
-
# device_map="auto",
|
164 |
-
# quantization_config=quantization_config)
|
165 |
-
|
166 |
-
# @spaces.GPU()
|
167 |
-
# def stream_chat(
|
168 |
-
# message: str,
|
169 |
-
# history: list,
|
170 |
-
# system_prompt: str,
|
171 |
-
# temperature: float = 0.8,
|
172 |
-
# max_new_tokens: int = 1024,
|
173 |
-
# top_p: float = 1.0,
|
174 |
-
# top_k: int = 20,
|
175 |
-
# penalty: float = 1.2,
|
176 |
-
# ):
|
177 |
-
# print(f'message: {message}')
|
178 |
-
# print(f'history: {history}')
|
179 |
-
|
180 |
-
# conversation = [
|
181 |
-
# {"role": "system", "content": system_prompt}
|
182 |
-
# ]
|
183 |
-
# for prompt, answer in history:
|
184 |
-
# conversation.extend([
|
185 |
-
# {"role": "user", "content": prompt},
|
186 |
-
# {"role": "assistant", "content": answer},
|
187 |
-
# ])
|
188 |
-
|
189 |
-
# conversation.append({"role": "user", "content": message})
|
190 |
-
|
191 |
-
# input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt").to(model.device)
|
192 |
-
|
193 |
-
# streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
|
194 |
-
|
195 |
-
# generate_kwargs = dict(
|
196 |
-
# input_ids=input_ids,
|
197 |
-
# max_new_tokens = max_new_tokens,
|
198 |
-
# do_sample = False if temperature == 0 else True,
|
199 |
-
# top_p = top_p,
|
200 |
-
# top_k = top_k,
|
201 |
-
# temperature = temperature,
|
202 |
-
# repetition_penalty=penalty,
|
203 |
-
# eos_token_id=[128001,128008,128009],
|
204 |
-
# streamer=streamer,
|
205 |
-
# )
|
206 |
-
|
207 |
-
# with torch.no_grad():
|
208 |
-
# thread = Thread(target=model.generate, kwargs=generate_kwargs)
|
209 |
-
# thread.start()
|
210 |
-
|
211 |
-
# buffer = ""
|
212 |
-
# for new_text in streamer:
|
213 |
-
# buffer += new_text
|
214 |
-
# yield buffer
|
215 |
-
|
216 |
-
|
217 |
-
# chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER)
|
218 |
-
|
219 |
-
# with gr.Blocks(css=CSS, theme="soft") as demo:
|
220 |
-
# gr.HTML(TITLE)
|
221 |
-
# gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
|
222 |
-
# gr.ChatInterface(
|
223 |
-
# fn=stream_chat,
|
224 |
-
# chatbot=chatbot,
|
225 |
-
# fill_height=True,
|
226 |
-
# additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
|
227 |
-
# additional_inputs=[
|
228 |
-
# gr.Textbox(
|
229 |
-
# value="You are a helpful assistant",
|
230 |
-
# label="System Prompt",
|
231 |
-
# render=False,
|
232 |
-
# ),
|
233 |
-
# gr.Slider(
|
234 |
-
# minimum=0,
|
235 |
-
# maximum=1,
|
236 |
-
# step=0.1,
|
237 |
-
# value=0.8,
|
238 |
-
# label="Temperature",
|
239 |
-
# render=False,
|
240 |
-
# ),
|
241 |
-
# gr.Slider(
|
242 |
-
# minimum=128,
|
243 |
-
# maximum=8192,
|
244 |
-
# step=1,
|
245 |
-
# value=1024,
|
246 |
-
# label="Max new tokens",
|
247 |
-
# render=False,
|
248 |
-
# ),
|
249 |
-
# gr.Slider(
|
250 |
-
# minimum=0.0,
|
251 |
-
# maximum=1.0,
|
252 |
-
# step=0.1,
|
253 |
-
# value=1.0,
|
254 |
-
# label="top_p",
|
255 |
-
# render=False,
|
256 |
-
# ),
|
257 |
-
# gr.Slider(
|
258 |
-
# minimum=1,
|
259 |
-
# maximum=20,
|
260 |
-
# step=1,
|
261 |
-
# value=20,
|
262 |
-
# label="top_k",
|
263 |
-
# render=False,
|
264 |
-
# ),
|
265 |
-
# gr.Slider(
|
266 |
-
# minimum=0.0,
|
267 |
-
# maximum=2.0,
|
268 |
-
# step=0.1,
|
269 |
-
# value=1.2,
|
270 |
-
# label="Repetition penalty",
|
271 |
-
# render=False,
|
272 |
-
# ),
|
273 |
-
# ],
|
274 |
-
# examples=[
|
275 |
-
# ["Help me study vocabulary: write a sentence for me to fill in the blank, and I'll try to pick the correct option."],
|
276 |
-
# ["What are 5 creative things I could do with my kids' art? I don't want to throw them away, but it's also so much clutter."],
|
277 |
-
# ["Tell me a random fun fact about the Roman Empire."],
|
278 |
-
# ["Show me a code snippet of a website's sticky header in CSS and JavaScript."],
|
279 |
-
# ],
|
280 |
-
# cache_examples=False,
|
281 |
-
# )
|
282 |
-
|
283 |
-
|
284 |
-
# if __name__ == "__main__":
|
285 |
-
# demo.launch()
|
286 |
-
|
287 |
-
import os
|
288 |
-
import gradio as gr
|
289 |
-
from huggingface_hub import InferenceClient
|
290 |
-
|
291 |
-
|
292 |
-
# Your Hugging Face configuration
|
293 |
-
model_name = "meta-llama/Meta-Llama-3.1-8B-Instruct"
|
294 |
-
# token = "hf_xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"
|
295 |
-
|
296 |
-
# Initialize Inference Client with model and token
|
297 |
-
inference_client = InferenceClient()
|
298 |
-
|
299 |
-
def chat_completion(message, history):
|
300 |
-
# Pass user input through Hugging Face model
|
301 |
-
response = inference_client.chat(
|
302 |
-
model=model_name,
|
303 |
-
messages=[{"role": "user", "content": message}],
|
304 |
-
max_tokens=500,
|
305 |
-
stream=False
|
306 |
-
)
|
307 |
-
|
308 |
-
# Extract content from the response
|
309 |
-
response_text = response['choices'][0]['delta']['content']
|
310 |
-
|
311 |
-
# Return response and updated history
|
312 |
-
return response_text
|
313 |
|
314 |
-
#
|
315 |
-
|
316 |
-
chatbot.launch()
|
|
|
113 |
# demo.launch()
|
114 |
|
115 |
|
116 |
+
# Use a pipeline as a high-level helper
|
117 |
+
from transformers import pipeline
|
118 |
|
119 |
+
messages = [
|
120 |
+
{"role": "user", "content": "Who are you?"},
|
121 |
+
]
|
122 |
+
pipe = pipeline("text-generation", model="meta-llama/Meta-Llama-3.1-8B-Instruct")
|
123 |
+
pipe(messages)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
|
125 |
+
# # Load model directly
|
126 |
+
# from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
|
128 |
+
# tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3.1-8B-Instruct")
|
129 |
+
# model = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3.1-8B-Instruct")
|
|