Spaces:
Sleeping
Sleeping
File size: 3,779 Bytes
61d946f 7c364eb 61d946f 7c364eb b9acf24 7c364eb b9acf24 786bf8b b9acf24 c5d274e b9acf24 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
# import gradio as gr
# from huggingface_hub import InferenceClient
# """
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
# """
# client = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct")
# ## None type
# def respond(
# message: str,
# history: list[tuple[str, str]], # This will not be used
# system_message: str,
# max_tokens: int,
# temperature: float,
# top_p: float,
# ):
# messages = [{"role": "system", "content": system_message}]
# # Append only the latest user message
# messages.append({"role": "user", "content": message})
# response = ""
# try:
# # Generate response from the model
# for message in client.chat_completion(
# messages,
# max_tokens=max_tokens,
# stream=True,
# temperature=temperature,
# top_p=top_p,
# ):
# if message.choices[0].delta.content is not None:
# token = message.choices[0].delta.content
# response += token
# yield response
# except Exception as e:
# yield f"An error occurred: {e}"
# ],
# )
# if __name__ == "__main__":
# demo.launch()
##Running smothly CHATBOT
# import gradio as gr
# from huggingface_hub import InferenceClient
# """
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
# """
# client = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct")
# def respond(
# message: str,
# history: list[tuple[str, str]], # This will not be used
# system_message: str,
# max_tokens: int,
# temperature: float,
# top_p: float,
# ):
# # Build the messages list
# messages = [{"role": "system", "content": system_message}]
# messages.append({"role": "user", "content": message})
# response = ""
# try:
# # Generate response from the model
# for msg in client.chat_completion(
# messages=messages,
# max_tokens=max_tokens,
# stream=True,
# temperature=temperature,
# top_p=top_p,
# ):
# if msg.choices[0].delta.content is not None:
# token = msg.choices[0].delta.content
# response += token
# yield response
# except Exception as e:
# yield f"An error occurred: {e}"
# """
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
# """
# demo = gr.ChatInterface(
# respond,
# additional_inputs=[
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
# gr.Slider(
# minimum=0.1,
# maximum=1.0,
# value=0.95,
# step=0.05,
# label="Top-p (nucleus sampling)",
# ),
# ],
# )
# if __name__ == "__main__":
# demo.launch()
# Use a pipeline as a high-level helper
from transformers import pipeline
messages = [
{"role": "user", "content": "Who are you?"},
]
pipe = pipeline("text-generation", model="meta-llama/Meta-Llama-3.1-8B-Instruct")
pipe(messages)
# # Load model directly
# from transformers import AutoTokenizer, AutoModelForCausalLM
# tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3.1-8B-Instruct")
# model = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3.1-8B-Instruct")
|