MadsGalsgaard commited on
Commit
c5d274e
·
verified ·
1 Parent(s): e100629

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +75 -60
app.py CHANGED
@@ -1,61 +1,76 @@
1
- import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("meta-llama/Meta-Llama-3-8B")
8
-
9
- ## None type
10
- def respond(
11
- message: str,
12
- history: list[tuple[str, str]], # This will not be used
13
- system_message: str,
14
- max_tokens: int,
15
- temperature: float,
16
- top_p: float,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- # Append only the latest user message
21
- messages.append({"role": "user", "content": message})
22
-
23
- response = ""
24
-
25
- try:
26
- # Generate response from the model
27
- for message in client.chat_completion(
28
- messages,
29
- max_tokens=max_tokens,
30
- stream=True,
31
- temperature=temperature,
32
- top_p=top_p,
33
- ):
34
- if message.choices[0].delta.content is not None:
35
- token = message.choices[0].delta.content
36
- response += token
37
- yield response
38
- except Exception as e:
39
- yield f"An error occurred: {e}"
40
-
41
- """
42
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
43
- """
44
- demo = gr.ChatInterface(
45
- respond,
46
- additional_inputs=[
47
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
48
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
49
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
50
- gr.Slider(
51
- minimum=0.1,
52
- maximum=1.0,
53
- value=0.95,
54
- step=0.05,
55
- label="Top-p (nucleus sampling)",
56
- ),
57
- ],
58
- )
59
-
60
- if __name__ == "__main__":
61
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # import gradio as gr
2
+ # from huggingface_hub import InferenceClient
3
+
4
+ # """
5
+ # For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
+ # """
7
+ # client = InferenceClient("meta-llama/Meta-Llama-3-8B")
8
+
9
+ # ## None type
10
+ # def respond(
11
+ # message: str,
12
+ # history: list[tuple[str, str]], # This will not be used
13
+ # system_message: str,
14
+ # max_tokens: int,
15
+ # temperature: float,
16
+ # top_p: float,
17
+ # ):
18
+ # messages = [{"role": "system", "content": system_message}]
19
 
20
+ # # Append only the latest user message
21
+ # messages.append({"role": "user", "content": message})
22
+
23
+ # response = ""
24
+
25
+ # try:
26
+ # # Generate response from the model
27
+ # for message in client.chat_completion(
28
+ # messages,
29
+ # max_tokens=max_tokens,
30
+ # stream=True,
31
+ # temperature=temperature,
32
+ # top_p=top_p,
33
+ # ):
34
+ # if message.choices[0].delta.content is not None:
35
+ # token = message.choices[0].delta.content
36
+ # response += token
37
+ # yield response
38
+ # except Exception as e:
39
+ # yield f"An error occurred: {e}"
40
+
41
+ # """
42
+ # For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
43
+ # """
44
+ # demo = gr.ChatInterface(
45
+ # respond,
46
+ # additional_inputs=[
47
+ # gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
48
+ # gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
49
+ # gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
50
+ # gr.Slider(
51
+ # minimum=0.1,
52
+ # maximum=1.0,
53
+ # value=0.95,
54
+ # step=0.05,
55
+ # label="Top-p (nucleus sampling)",
56
+ # ),
57
+ # ],
58
+ # )
59
+
60
+ # if __name__ == "__main__":
61
+ # demo.launch()
62
+
63
+
64
+
65
+ import requests
66
+
67
+ API_URL = "https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3.1-405B"
68
+ headers = {"Authorization": "Bearer hf_xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"}
69
+
70
+ def query(payload):
71
+ response = requests.post(API_URL, headers=headers, json=payload)
72
+ return response.json()
73
+
74
+ output = query({
75
+ "inputs": "Can you please let us know more details about your ",
76
+ })