File size: 1,374 Bytes
9ca7283
 
c5d274e
9ca7283
 
 
8d5090f
c5d274e
8d5090f
9ca7283
 
 
 
 
 
 
 
8d5090f
 
 
 
 
 
 
 
 
c5d274e
9ca7283
c5d274e
9ca7283
8d5090f
 
 
 
 
9ca7283
 
 
8d5090f
 
 
9ca7283
 
 
c5d274e
8d5090f
39053fd
 
9ca7283
 
c5d274e
 
8d5090f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import gradio as gr
from huggingface_hub import InferenceClient

"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
client = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct")

## None type 
def respond(
    message: str,
    history: list[tuple[str, str]],  # This will not be used
    system_message: str,
    max_tokens: int,
    temperature: float,
    top_p: float,
):
    messages = [{"role": "system", "content": system_message}]
    
    # Append only the latest user message





    messages.append({"role": "user", "content": message})

    response = ""

    try:
        # Generate response from the model
        for message in client.chat_completion(
            messages,
            max_tokens=max_tokens,
            stream=True,
            temperature=temperature,
            top_p=top_p,
        ):
            if message.choices[0].delta.content is not None:
                token = message.choices[0].delta.content
                response += token
            yield response
    except Exception as e:
        yield f"An error occurred: {e}"

"""
 For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
    ],
)


if __name__ == "__main__":
    demo.launch()