Spaces:
Sleeping
Sleeping
fix bug
Browse files
app.py
CHANGED
@@ -1,93 +1,94 @@
|
|
1 |
-
|
2 |
-
|
|
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
|
20 |
-
#
|
21 |
-
|
22 |
|
23 |
-
|
24 |
|
25 |
-
|
26 |
-
#
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
|
60 |
-
|
61 |
-
|
62 |
|
63 |
|
64 |
-
import os
|
65 |
-
import gradio as gr
|
66 |
-
from huggingface_hub import InferenceClient
|
67 |
|
68 |
-
# Initialize the Hugging Face Inference Client
|
69 |
-
client = InferenceClient(
|
70 |
-
|
71 |
-
|
72 |
-
)
|
73 |
|
74 |
-
# Define a function to handle the chat input and get a response from the model
|
75 |
-
def chat_with_model(user_input):
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
|
86 |
-
# Create a Gradio interface with a chat component
|
87 |
-
with gr.Blocks() as demo:
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
|
93 |
-
demo.launch()
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
from huggingface_hub import InferenceClient
|
4 |
|
5 |
+
"""
|
6 |
+
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
7 |
+
"""
|
8 |
+
client = InferenceClient("meta-llama/Meta-Llama-3-8B",token=os.getenv('HF_API_TOKEN'))
|
9 |
|
10 |
+
## None type
|
11 |
+
def respond(
|
12 |
+
message: str,
|
13 |
+
history: list[tuple[str, str]], # This will not be used
|
14 |
+
system_message: str,
|
15 |
+
max_tokens: int,
|
16 |
+
temperature: float,
|
17 |
+
top_p: float,
|
18 |
+
):
|
19 |
+
messages = [{"role": "system", "content": system_message}]
|
20 |
|
21 |
+
# Append only the latest user message
|
22 |
+
messages.append({"role": "user", "content": message})
|
23 |
|
24 |
+
response = ""
|
25 |
|
26 |
+
try:
|
27 |
+
# Generate response from the model
|
28 |
+
for message in client.chat_completion(
|
29 |
+
messages,
|
30 |
+
max_tokens=max_tokens,
|
31 |
+
stream=True,
|
32 |
+
temperature=temperature,
|
33 |
+
top_p=top_p,
|
34 |
+
):
|
35 |
+
if message.choices[0].delta.content is not None:
|
36 |
+
token = message.choices[0].delta.content
|
37 |
+
response += token
|
38 |
+
yield response
|
39 |
+
except Exception as e:
|
40 |
+
yield f"An error occurred: {e}"
|
41 |
|
42 |
+
"""
|
43 |
+
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
44 |
+
"""
|
45 |
+
demo = gr.ChatInterface(
|
46 |
+
respond,
|
47 |
+
additional_inputs=[
|
48 |
+
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
49 |
+
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
50 |
+
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
51 |
+
gr.Slider(
|
52 |
+
minimum=0.1,
|
53 |
+
maximum=1.0,
|
54 |
+
value=0.95,
|
55 |
+
step=0.05,
|
56 |
+
label="Top-p (nucleus sampling)",
|
57 |
+
),
|
58 |
+
],
|
59 |
+
)
|
60 |
|
61 |
+
if __name__ == "__main__":
|
62 |
+
demo.launch()
|
63 |
|
64 |
|
65 |
+
# import os
|
66 |
+
# import gradio as gr
|
67 |
+
# from huggingface_hub import InferenceClient
|
68 |
|
69 |
+
# # Initialize the Hugging Face Inference Client
|
70 |
+
# client = InferenceClient(
|
71 |
+
# "meta-llama/Meta-Llama-3.1-8B-Instruct",
|
72 |
+
# token= os.getenv("HF_API_TOKEN"),# Replace with your actual token
|
73 |
+
# )
|
74 |
|
75 |
+
# # Define a function to handle the chat input and get a response from the model
|
76 |
+
# def chat_with_model(user_input):
|
77 |
+
# # Call the client to get the model's response
|
78 |
+
# response = ""
|
79 |
+
# for message in client.chat_completion(
|
80 |
+
# messages=[{"role": "user", "content": user_input}],
|
81 |
+
# max_tokens=500,
|
82 |
+
# stream=True,
|
83 |
+
# ):
|
84 |
+
# response += message.choices[0].delta.content
|
85 |
+
# return response
|
86 |
|
87 |
+
# # Create a Gradio interface with a chat component
|
88 |
+
# with gr.Blocks() as demo:
|
89 |
+
# chatbot = gr.Chatbot()
|
90 |
+
# with gr.Row():
|
91 |
+
# txt = gr.Textbox(show_label=False, placeholder="Type your message here...")
|
92 |
+
# txt.submit(chat_with_model, inputs=txt, outputs=chatbot)
|
93 |
|
94 |
+
# demo.launch()
|