File size: 3,146 Bytes
61d946f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ca7283
 
c5d274e
9ca7283
 
 
8d5090f
c5d274e
9ca7283
 
 
 
 
 
 
 
61d946f
8d5090f
 
c5d274e
9ca7283
c5d274e
9ca7283
8d5090f
61d946f
 
8d5090f
 
9ca7283
 
 
61d946f
 
8d5090f
9ca7283
 
 
c5d274e
8d5090f
61d946f
39053fd
61d946f
 
 
 
 
 
 
 
 
 
 
 
 
9ca7283
 
c5d274e
8d5090f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
# import gradio as gr
# from huggingface_hub import InferenceClient

# """
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
# """
# client = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct")

# ## None type 
# def respond(
#     message: str,
#     history: list[tuple[str, str]],  # This will not be used
#     system_message: str,
#     max_tokens: int,
#     temperature: float,
#     top_p: float,
# ):
#     messages = [{"role": "system", "content": system_message}]
    
#     # Append only the latest user message





#     messages.append({"role": "user", "content": message})

#     response = ""

#     try:
#         # Generate response from the model
#         for message in client.chat_completion(
#             messages,
#             max_tokens=max_tokens,
#             stream=True,
#             temperature=temperature,
#             top_p=top_p,
#         ):
#             if message.choices[0].delta.content is not None:
#                 token = message.choices[0].delta.content
#                 response += token
#             yield response
#     except Exception as e:
#         yield f"An error occurred: {e}"
#     ],
# )


# if __name__ == "__main__":
#     demo.launch()



import gradio as gr
from huggingface_hub import InferenceClient

"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
client = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct")

def respond(
    message: str,
    history: list[tuple[str, str]],  # This will not be used
    system_message: str,
    max_tokens: int,
    temperature: float,
    top_p: float,
):
    # Build the messages list
    messages = [{"role": "system", "content": system_message}]
    messages.append({"role": "user", "content": message})

    response = ""

    try:
        # Generate response from the model
        for msg in client.chat_completion(
            messages=messages,
            max_tokens=max_tokens,
            stream=True,
            temperature=temperature,
            top_p=top_p,
        ):
            if msg.choices[0].delta.content is not None:
                token = msg.choices[0].delta.content
                response += token
            yield response
    except Exception as e:
        yield f"An error occurred: {e}"

"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)",
        ),
    ],
)

if __name__ == "__main__":
    demo.launch()