Spaces:
Runtime error
Runtime error
# Import spaces first to control GPU initialization | |
import spaces | |
# Now import other packages | |
import torch | |
import gradio as gr | |
from PIL import Image | |
from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline | |
from src.unet_hacked_garmnet import UNet2DConditionModel as UNet2DConditionModel_ref | |
from src.unet_hacked_tryon import UNet2DConditionModel | |
from transformers import ( | |
CLIPImageProcessor, | |
CLIPVisionModelWithProjection, | |
CLIPTextModel, | |
CLIPTextModelWithProjection, | |
) | |
from diffusers import DDPMScheduler, AutoencoderKL | |
from typing import List | |
import os | |
from transformers import AutoTokenizer | |
import numpy as np | |
from utils_mask import get_mask_location | |
from torchvision import transforms | |
import apply_net | |
from preprocess.humanparsing.run_parsing import Parsing | |
from preprocess.openpose.run_openpose import OpenPose | |
from detectron2.data.detection_utils import convert_PIL_to_numpy, _apply_exif_orientation | |
from torchvision.transforms.functional import to_pil_image | |
# Rest of your code remains the same... | |
# Function to convert a PIL image to a binary mask | |
def pil_to_binary_mask(pil_image, threshold=0): | |
np_image = np.array(pil_image.convert("L")) | |
mask = (np_image > threshold).astype(np.uint8) * 255 | |
return Image.fromarray(mask) | |
# Base paths for pre-trained models and examples | |
base_path = 'yisol/IDM-VTON' | |
example_path = os.path.join(os.path.dirname(__file__), 'example') | |
# Load the UNet model for try-on | |
unet = UNet2DConditionModel.from_pretrained(base_path, subfolder="unet", torch_dtype=torch.float16) | |
unet.requires_grad_(False) | |
# Load tokenizers and other required models | |
tokenizer_one = AutoTokenizer.from_pretrained(base_path, subfolder="tokenizer", use_fast=False) | |
tokenizer_two = AutoTokenizer.from_pretrained(base_path, subfolder="tokenizer_2", use_fast=False) | |
noise_scheduler = DDPMScheduler.from_pretrained(base_path, subfolder="scheduler") | |
text_encoder_one = CLIPTextModel.from_pretrained(base_path, subfolder="text_encoder", torch_dtype=torch.float16) | |
text_encoder_two = CLIPTextModelWithProjection.from_pretrained(base_path, subfolder="text_encoder_2", torch_dtype=torch.float16) | |
image_encoder = CLIPVisionModelWithProjection.from_pretrained(base_path, subfolder="image_encoder", torch_dtype=torch.float16) | |
vae = AutoencoderKL.from_pretrained(base_path, subfolder="vae", torch_dtype=torch.float16) | |
UNet_Encoder = UNet2DConditionModel_ref.from_pretrained(base_path, subfolder="unet_encoder", torch_dtype=torch.float16) | |
# Load parsing and openpose models | |
parsing_model = Parsing(0) | |
openpose_model = OpenPose(0) | |
# Freeze the parameters of the models to avoid gradients | |
UNet_Encoder.requires_grad_(False) | |
image_encoder.requires_grad_(False) | |
vae.requires_grad_(False) | |
unet.requires_grad_(False) | |
text_encoder_one.requires_grad_(False) | |
text_encoder_two.requires_grad_(False) | |
# Image transformation function | |
tensor_transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize([0.5], [0.5])]) | |
# Initialize the pipeline for try-on | |
pipe = TryonPipeline.from_pretrained( | |
base_path, | |
unet=unet, | |
vae=vae, | |
feature_extractor=CLIPImageProcessor(), | |
text_encoder=text_encoder_one, | |
text_encoder_2=text_encoder_two, | |
tokenizer=tokenizer_one, | |
tokenizer_2=tokenizer_two, | |
scheduler=noise_scheduler, | |
image_encoder=image_encoder, | |
torch_dtype=torch.float16, | |
) | |
pipe.unet_encoder = UNet_Encoder | |
# Main function for try-on with error handling | |
def start_tryon(dict, garm_img, garment_des, is_checked, is_checked_crop, denoise_steps, seed): | |
try: | |
device = "cuda" | |
# Prepare the device and models for computation | |
openpose_model.preprocessor.body_estimation.model.to(device) | |
pipe.to(device) | |
pipe.unet_encoder.to(device) | |
# Prepare the images | |
garm_img = garm_img.convert("RGB").resize((768, 1024)) | |
human_img_orig = dict["background"].convert("RGB") | |
# Handle cropping if needed | |
if is_checked_crop: | |
width, height = human_img_orig.size | |
target_width = int(min(width, height * (3 / 4))) | |
target_height = int(min(height, width * (4 / 3))) | |
left = (width - target_width) / 2 | |
top = (height - target_height) / 2 | |
right = (width + target_width) / 2 | |
bottom = (height + target_height) / 2 | |
cropped_img = human_img_orig.crop((left, top, right, bottom)) | |
crop_size = cropped_img.size | |
human_img = cropped_img.resize((768, 1024)) | |
else: | |
human_img = human_img_orig.resize((768, 1024)) | |
# Apply masking if selected | |
if is_checked: | |
keypoints = openpose_model(human_img.resize((384, 512))) | |
model_parse, _ = parsing_model(human_img.resize((384, 512))) | |
mask, mask_gray = get_mask_location('hd', "upper_body", model_parse, keypoints) | |
mask = mask.resize((768, 1024)) | |
else: | |
mask = pil_to_binary_mask(dict['layers'][0].convert("RGB").resize((768, 1024))) | |
mask_gray = (1 - transforms.ToTensor()(mask)) * tensor_transform(human_img) | |
mask_gray = to_pil_image((mask_gray + 1.0) / 2.0) | |
# Apply pose estimation | |
human_img_arg = _apply_exif_orientation(human_img.resize((384, 512))) | |
human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR") | |
args = apply_net.create_argument_parser().parse_args( | |
('show', './configs/densepose_rcnn_R_50_FPN_s1x.yaml', './ckpt/densepose/model_final_162be9.pkl', 'dp_segm', '-v', '--opts', 'MODEL.DEVICE', 'cuda') | |
) | |
pose_img = args.func(args, human_img_arg) | |
pose_img = pose_img[:, :, ::-1] | |
pose_img = Image.fromarray(pose_img).resize((768, 1024)) | |
# Generate the try-on image | |
with torch.no_grad(): | |
with torch.cuda.amp.autocast(): | |
prompt = "model is wearing " + garment_des | |
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality" | |
prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds = pipe.encode_prompt( | |
prompt, num_images_per_prompt=1, do_classifier_free_guidance=True, negative_prompt=negative_prompt | |
) | |
# Cloth prompt embedding | |
prompt = "a photo of " + garment_des | |
prompt_embeds_c, _, _, _ = pipe.encode_prompt( | |
prompt, num_images_per_prompt=1, do_classifier_free_guidance=False, negative_prompt=negative_prompt | |
) | |
# Convert pose image and garment to tensors | |
pose_img = tensor_transform(pose_img).unsqueeze(0).to(device, torch.float16) | |
garm_tensor = tensor_transform(garm_img).unsqueeze(0).to(device, torch.float16) | |
generator = torch.Generator(device).manual_seed(seed) if seed is not None else None | |
# Run the pipeline | |
images = pipe( | |
prompt_embeds=prompt_embeds.to(device, torch.float16), | |
negative_prompt_embeds=negative_prompt_embeds.to(device, torch.float16), | |
pooled_prompt_embeds=pooled_prompt_embeds.to(device, torch.float16), | |
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds.to(device, torch.float16), | |
num_inference_steps=denoise_steps, | |
generator=generator, | |
strength=1.0, | |
pose_img=pose_img.to(device, torch.float16), | |
text_embeds_cloth=prompt_embeds_c.to(device, torch.float16), | |
cloth=garm_tensor.to(device, torch.float16), | |
mask_image=mask, | |
image=human_img, | |
height=1024, | |
width=768, | |
ip_adapter_image=garm_img.resize((768, 1024)), | |
guidance_scale=2.0, | |
)[0] | |
if is_checked_crop: | |
out_img = images[0].resize(crop_size) | |
human_img_orig.paste(out_img, (int(left), int(top))) | |
return human_img_orig, mask_gray | |
else: | |
return images[0], mask_gray | |
except Exception as e: | |
print(f"Error during try-on: {e}") | |
return None, None | |
# Gradio interface setup | |
garm_list = os.listdir(os.path.join(example_path, "cloth")) | |
garm_list_path = [os.path.join(example_path, "cloth", garm) for garm in garm_list] | |
human_list = os.listdir(os.path.join(example_path, "human")) | |
human_list_path = [os.path.join(example_path, "human", human) for human in human_list] | |
human_ex_list = [{"background": ex_human, "layers": None, "composite": None} for ex_human in human_list_path] | |
# Gradio blocks UI | |
with gr.Blocks() as image_blocks: | |
with gr.Column(): | |
with gr.Row(): | |
# imgs = gr.Image(source='upload', type="pil", label='Person Image') | |
imgs = gr.Image(type="pil", label='Person Image') # Remove the 'source' argument | |
is_checked = gr.Checkbox(label="Check if mask needed") | |
is_checked_crop = gr.Checkbox(label="Check to crop") | |
ex_img = gr.Examples(inputs=imgs, examples_per_page=9, examples=human_ex_list) | |
with gr.Column(): | |
garm_img = gr.Image(source='upload', type="pil", label='Cloth') | |
garment_des = gr.Textbox(label="Garment Description", value='garment,shirt') | |
ex_garm = gr.Examples(inputs=garm_img, examples_per_page=9, examples=garm_list_path) | |
with gr.Row(): | |
denoise_steps = gr.Slider(label="denoise steps", minimum=1, maximum=50, step=1, value=25) | |
seed = gr.Slider(label="Seed (for reproducible results)", minimum=0, maximum=2147483647, step=1) | |
with gr.Row(): | |
try_button = gr.Button("Try it on") | |
with gr.Row(): | |
out_img = gr.Image(label="Generated tryon output") | |
masked_img = gr.Image(label="Mask") | |
try_button.click( | |
start_tryon, | |
inputs=[imgs, garm_img, garment_des, is_checked, is_checked_crop, denoise_steps, seed], | |
outputs=[out_img, masked_img] | |
) | |
# Launch Gradio app | |
image_blocks.launch(server_name="0.0.0.0", server_port=7860) | |