# Import spaces first to control GPU initialization import spaces # Now import other packages import torch import gradio as gr from PIL import Image from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline from src.unet_hacked_garmnet import UNet2DConditionModel as UNet2DConditionModel_ref from src.unet_hacked_tryon import UNet2DConditionModel from transformers import ( CLIPImageProcessor, CLIPVisionModelWithProjection, CLIPTextModel, CLIPTextModelWithProjection, ) from diffusers import DDPMScheduler, AutoencoderKL from typing import List import os from transformers import AutoTokenizer import numpy as np from utils_mask import get_mask_location from torchvision import transforms import apply_net from preprocess.humanparsing.run_parsing import Parsing from preprocess.openpose.run_openpose import OpenPose from detectron2.data.detection_utils import convert_PIL_to_numpy, _apply_exif_orientation from torchvision.transforms.functional import to_pil_image # Rest of your code remains the same... # Function to convert a PIL image to a binary mask def pil_to_binary_mask(pil_image, threshold=0): np_image = np.array(pil_image.convert("L")) mask = (np_image > threshold).astype(np.uint8) * 255 return Image.fromarray(mask) # Base paths for pre-trained models and examples base_path = 'yisol/IDM-VTON' example_path = os.path.join(os.path.dirname(__file__), 'example') # Load the UNet model for try-on unet = UNet2DConditionModel.from_pretrained(base_path, subfolder="unet", torch_dtype=torch.float16) unet.requires_grad_(False) # Load tokenizers and other required models tokenizer_one = AutoTokenizer.from_pretrained(base_path, subfolder="tokenizer", use_fast=False) tokenizer_two = AutoTokenizer.from_pretrained(base_path, subfolder="tokenizer_2", use_fast=False) noise_scheduler = DDPMScheduler.from_pretrained(base_path, subfolder="scheduler") text_encoder_one = CLIPTextModel.from_pretrained(base_path, subfolder="text_encoder", torch_dtype=torch.float16) text_encoder_two = CLIPTextModelWithProjection.from_pretrained(base_path, subfolder="text_encoder_2", torch_dtype=torch.float16) image_encoder = CLIPVisionModelWithProjection.from_pretrained(base_path, subfolder="image_encoder", torch_dtype=torch.float16) vae = AutoencoderKL.from_pretrained(base_path, subfolder="vae", torch_dtype=torch.float16) UNet_Encoder = UNet2DConditionModel_ref.from_pretrained(base_path, subfolder="unet_encoder", torch_dtype=torch.float16) # Load parsing and openpose models parsing_model = Parsing(0) openpose_model = OpenPose(0) # Freeze the parameters of the models to avoid gradients UNet_Encoder.requires_grad_(False) image_encoder.requires_grad_(False) vae.requires_grad_(False) unet.requires_grad_(False) text_encoder_one.requires_grad_(False) text_encoder_two.requires_grad_(False) # Image transformation function tensor_transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize([0.5], [0.5])]) # Initialize the pipeline for try-on pipe = TryonPipeline.from_pretrained( base_path, unet=unet, vae=vae, feature_extractor=CLIPImageProcessor(), text_encoder=text_encoder_one, text_encoder_2=text_encoder_two, tokenizer=tokenizer_one, tokenizer_2=tokenizer_two, scheduler=noise_scheduler, image_encoder=image_encoder, torch_dtype=torch.float16, ) pipe.unet_encoder = UNet_Encoder # Main function for try-on with error handling @spaces.GPU def start_tryon(dict, garm_img, garment_des, is_checked, is_checked_crop, denoise_steps, seed): try: device = "cuda" # Prepare the device and models for computation openpose_model.preprocessor.body_estimation.model.to(device) pipe.to(device) pipe.unet_encoder.to(device) # Prepare the images garm_img = garm_img.convert("RGB").resize((768, 1024)) human_img_orig = dict["background"].convert("RGB") # Handle cropping if needed if is_checked_crop: width, height = human_img_orig.size target_width = int(min(width, height * (3 / 4))) target_height = int(min(height, width * (4 / 3))) left = (width - target_width) / 2 top = (height - target_height) / 2 right = (width + target_width) / 2 bottom = (height + target_height) / 2 cropped_img = human_img_orig.crop((left, top, right, bottom)) crop_size = cropped_img.size human_img = cropped_img.resize((768, 1024)) else: human_img = human_img_orig.resize((768, 1024)) # Apply masking if selected if is_checked: keypoints = openpose_model(human_img.resize((384, 512))) model_parse, _ = parsing_model(human_img.resize((384, 512))) mask, mask_gray = get_mask_location('hd', "upper_body", model_parse, keypoints) mask = mask.resize((768, 1024)) else: mask = pil_to_binary_mask(dict['layers'][0].convert("RGB").resize((768, 1024))) mask_gray = (1 - transforms.ToTensor()(mask)) * tensor_transform(human_img) mask_gray = to_pil_image((mask_gray + 1.0) / 2.0) # Apply pose estimation human_img_arg = _apply_exif_orientation(human_img.resize((384, 512))) human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR") args = apply_net.create_argument_parser().parse_args( ('show', './configs/densepose_rcnn_R_50_FPN_s1x.yaml', './ckpt/densepose/model_final_162be9.pkl', 'dp_segm', '-v', '--opts', 'MODEL.DEVICE', 'cuda') ) pose_img = args.func(args, human_img_arg) pose_img = pose_img[:, :, ::-1] pose_img = Image.fromarray(pose_img).resize((768, 1024)) # Generate the try-on image with torch.no_grad(): with torch.cuda.amp.autocast(): prompt = "model is wearing " + garment_des negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality" prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds = pipe.encode_prompt( prompt, num_images_per_prompt=1, do_classifier_free_guidance=True, negative_prompt=negative_prompt ) # Cloth prompt embedding prompt = "a photo of " + garment_des prompt_embeds_c, _, _, _ = pipe.encode_prompt( prompt, num_images_per_prompt=1, do_classifier_free_guidance=False, negative_prompt=negative_prompt ) # Convert pose image and garment to tensors pose_img = tensor_transform(pose_img).unsqueeze(0).to(device, torch.float16) garm_tensor = tensor_transform(garm_img).unsqueeze(0).to(device, torch.float16) generator = torch.Generator(device).manual_seed(seed) if seed is not None else None # Run the pipeline images = pipe( prompt_embeds=prompt_embeds.to(device, torch.float16), negative_prompt_embeds=negative_prompt_embeds.to(device, torch.float16), pooled_prompt_embeds=pooled_prompt_embeds.to(device, torch.float16), negative_pooled_prompt_embeds=negative_pooled_prompt_embeds.to(device, torch.float16), num_inference_steps=denoise_steps, generator=generator, strength=1.0, pose_img=pose_img.to(device, torch.float16), text_embeds_cloth=prompt_embeds_c.to(device, torch.float16), cloth=garm_tensor.to(device, torch.float16), mask_image=mask, image=human_img, height=1024, width=768, ip_adapter_image=garm_img.resize((768, 1024)), guidance_scale=2.0, )[0] if is_checked_crop: out_img = images[0].resize(crop_size) human_img_orig.paste(out_img, (int(left), int(top))) return human_img_orig, mask_gray else: return images[0], mask_gray except Exception as e: print(f"Error during try-on: {e}") return None, None # Gradio interface setup garm_list = os.listdir(os.path.join(example_path, "cloth")) garm_list_path = [os.path.join(example_path, "cloth", garm) for garm in garm_list] human_list = os.listdir(os.path.join(example_path, "human")) human_list_path = [os.path.join(example_path, "human", human) for human in human_list] human_ex_list = [{"background": ex_human, "layers": None, "composite": None} for ex_human in human_list_path] # Gradio blocks UI with gr.Blocks() as image_blocks: with gr.Column(): with gr.Row(): # imgs = gr.Image(source='upload', type="pil", label='Person Image') imgs = gr.Image(type="pil", label='Person Image') # Remove the 'source' argument is_checked = gr.Checkbox(label="Check if mask needed") is_checked_crop = gr.Checkbox(label="Check to crop") ex_img = gr.Examples(inputs=imgs, examples_per_page=9, examples=human_ex_list) with gr.Column(): garm_img = gr.Image(source='upload', type="pil", label='Cloth') garment_des = gr.Textbox(label="Garment Description", value='garment,shirt') ex_garm = gr.Examples(inputs=garm_img, examples_per_page=9, examples=garm_list_path) with gr.Row(): denoise_steps = gr.Slider(label="denoise steps", minimum=1, maximum=50, step=1, value=25) seed = gr.Slider(label="Seed (for reproducible results)", minimum=0, maximum=2147483647, step=1) with gr.Row(): try_button = gr.Button("Try it on") with gr.Row(): out_img = gr.Image(label="Generated tryon output") masked_img = gr.Image(label="Mask") try_button.click( start_tryon, inputs=[imgs, garm_img, garment_des, is_checked, is_checked_crop, denoise_steps, seed], outputs=[out_img, masked_img] ) # Launch Gradio app image_blocks.launch(server_name="0.0.0.0", server_port=7860)