File size: 10,237 Bytes
f5708a7
 
 
 
 
9f9f395
 
 
 
 
 
 
 
 
 
 
f0fcafe
9f9f395
 
 
 
 
 
 
 
 
f0fcafe
9f9f395
 
f5708a7
 
9f9f395
f0fcafe
9f9f395
f0fcafe
 
 
9f9f395
 
f0fcafe
9f9f395
 
 
f0fcafe
 
9f9f395
 
f0fcafe
 
 
 
 
 
 
 
 
9f9f395
f0fcafe
9f9f395
 
 
f0fcafe
9f9f395
 
 
 
 
 
 
f0fcafe
 
 
 
9f9f395
f0fcafe
 
 
 
 
 
 
 
 
 
 
9f9f395
 
 
 
f0fcafe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f9f395
 
f0fcafe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f9f395
f0fcafe
bfaeb8d
 
f0fcafe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f9f395
f0fcafe
1c71664
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
# Import spaces first to control GPU initialization
import spaces

# Now import other packages
import torch
import gradio as gr
from PIL import Image
from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline
from src.unet_hacked_garmnet import UNet2DConditionModel as UNet2DConditionModel_ref
from src.unet_hacked_tryon import UNet2DConditionModel
from transformers import (
    CLIPImageProcessor,
    CLIPVisionModelWithProjection,
    CLIPTextModel,
    CLIPTextModelWithProjection,
)
from diffusers import DDPMScheduler, AutoencoderKL
from typing import List
import os
from transformers import AutoTokenizer
import numpy as np
from utils_mask import get_mask_location
from torchvision import transforms
import apply_net
from preprocess.humanparsing.run_parsing import Parsing
from preprocess.openpose.run_openpose import OpenPose
from detectron2.data.detection_utils import convert_PIL_to_numpy, _apply_exif_orientation
from torchvision.transforms.functional import to_pil_image

# Rest of your code remains the same...


# Function to convert a PIL image to a binary mask
def pil_to_binary_mask(pil_image, threshold=0):
    np_image = np.array(pil_image.convert("L"))
    mask = (np_image > threshold).astype(np.uint8) * 255
    return Image.fromarray(mask)


# Base paths for pre-trained models and examples
base_path = 'yisol/IDM-VTON'
example_path = os.path.join(os.path.dirname(__file__), 'example')

# Load the UNet model for try-on
unet = UNet2DConditionModel.from_pretrained(base_path, subfolder="unet", torch_dtype=torch.float16)
unet.requires_grad_(False)

# Load tokenizers and other required models
tokenizer_one = AutoTokenizer.from_pretrained(base_path, subfolder="tokenizer", use_fast=False)
tokenizer_two = AutoTokenizer.from_pretrained(base_path, subfolder="tokenizer_2", use_fast=False)
noise_scheduler = DDPMScheduler.from_pretrained(base_path, subfolder="scheduler")
text_encoder_one = CLIPTextModel.from_pretrained(base_path, subfolder="text_encoder", torch_dtype=torch.float16)
text_encoder_two = CLIPTextModelWithProjection.from_pretrained(base_path, subfolder="text_encoder_2", torch_dtype=torch.float16)
image_encoder = CLIPVisionModelWithProjection.from_pretrained(base_path, subfolder="image_encoder", torch_dtype=torch.float16)
vae = AutoencoderKL.from_pretrained(base_path, subfolder="vae", torch_dtype=torch.float16)
UNet_Encoder = UNet2DConditionModel_ref.from_pretrained(base_path, subfolder="unet_encoder", torch_dtype=torch.float16)

# Load parsing and openpose models
parsing_model = Parsing(0)
openpose_model = OpenPose(0)

# Freeze the parameters of the models to avoid gradients
UNet_Encoder.requires_grad_(False)
image_encoder.requires_grad_(False)
vae.requires_grad_(False)
unet.requires_grad_(False)
text_encoder_one.requires_grad_(False)
text_encoder_two.requires_grad_(False)

# Image transformation function
tensor_transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize([0.5], [0.5])])

# Initialize the pipeline for try-on
pipe = TryonPipeline.from_pretrained(
    base_path,
    unet=unet,
    vae=vae,
    feature_extractor=CLIPImageProcessor(),
    text_encoder=text_encoder_one,
    text_encoder_2=text_encoder_two,
    tokenizer=tokenizer_one,
    tokenizer_2=tokenizer_two,
    scheduler=noise_scheduler,
    image_encoder=image_encoder,
    torch_dtype=torch.float16,
)
pipe.unet_encoder = UNet_Encoder


# Main function for try-on with error handling
@spaces.GPU
def start_tryon(dict, garm_img, garment_des, is_checked, is_checked_crop, denoise_steps, seed):
    try:
        device = "cuda"

        # Prepare the device and models for computation
        openpose_model.preprocessor.body_estimation.model.to(device)
        pipe.to(device)
        pipe.unet_encoder.to(device)

        # Prepare the images
        garm_img = garm_img.convert("RGB").resize((768, 1024))
        human_img_orig = dict["background"].convert("RGB")

        # Handle cropping if needed
        if is_checked_crop:
            width, height = human_img_orig.size
            target_width = int(min(width, height * (3 / 4)))
            target_height = int(min(height, width * (4 / 3)))
            left = (width - target_width) / 2
            top = (height - target_height) / 2
            right = (width + target_width) / 2
            bottom = (height + target_height) / 2
            cropped_img = human_img_orig.crop((left, top, right, bottom))
            crop_size = cropped_img.size
            human_img = cropped_img.resize((768, 1024))
        else:
            human_img = human_img_orig.resize((768, 1024))

        # Apply masking if selected
        if is_checked:
            keypoints = openpose_model(human_img.resize((384, 512)))
            model_parse, _ = parsing_model(human_img.resize((384, 512)))
            mask, mask_gray = get_mask_location('hd', "upper_body", model_parse, keypoints)
            mask = mask.resize((768, 1024))
        else:
            mask = pil_to_binary_mask(dict['layers'][0].convert("RGB").resize((768, 1024)))

        mask_gray = (1 - transforms.ToTensor()(mask)) * tensor_transform(human_img)
        mask_gray = to_pil_image((mask_gray + 1.0) / 2.0)

        # Apply pose estimation
        human_img_arg = _apply_exif_orientation(human_img.resize((384, 512)))
        human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR")

        args = apply_net.create_argument_parser().parse_args(
            ('show', './configs/densepose_rcnn_R_50_FPN_s1x.yaml', './ckpt/densepose/model_final_162be9.pkl', 'dp_segm', '-v', '--opts', 'MODEL.DEVICE', 'cuda')
        )
        pose_img = args.func(args, human_img_arg)
        pose_img = pose_img[:, :, ::-1]
        pose_img = Image.fromarray(pose_img).resize((768, 1024))

        # Generate the try-on image
        with torch.no_grad():
            with torch.cuda.amp.autocast():
                prompt = "model is wearing " + garment_des
                negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
                prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds = pipe.encode_prompt(
                    prompt, num_images_per_prompt=1, do_classifier_free_guidance=True, negative_prompt=negative_prompt
                )

                # Cloth prompt embedding
                prompt = "a photo of " + garment_des
                prompt_embeds_c, _, _, _ = pipe.encode_prompt(
                    prompt, num_images_per_prompt=1, do_classifier_free_guidance=False, negative_prompt=negative_prompt
                )

                # Convert pose image and garment to tensors
                pose_img = tensor_transform(pose_img).unsqueeze(0).to(device, torch.float16)
                garm_tensor = tensor_transform(garm_img).unsqueeze(0).to(device, torch.float16)
                generator = torch.Generator(device).manual_seed(seed) if seed is not None else None

                # Run the pipeline
                images = pipe(
                    prompt_embeds=prompt_embeds.to(device, torch.float16),
                    negative_prompt_embeds=negative_prompt_embeds.to(device, torch.float16),
                    pooled_prompt_embeds=pooled_prompt_embeds.to(device, torch.float16),
                    negative_pooled_prompt_embeds=negative_pooled_prompt_embeds.to(device, torch.float16),
                    num_inference_steps=denoise_steps,
                    generator=generator,
                    strength=1.0,
                    pose_img=pose_img.to(device, torch.float16),
                    text_embeds_cloth=prompt_embeds_c.to(device, torch.float16),
                    cloth=garm_tensor.to(device, torch.float16),
                    mask_image=mask,
                    image=human_img,
                    height=1024,
                    width=768,
                    ip_adapter_image=garm_img.resize((768, 1024)),
                    guidance_scale=2.0,
                )[0]

        if is_checked_crop:
            out_img = images[0].resize(crop_size)
            human_img_orig.paste(out_img, (int(left), int(top)))
            return human_img_orig, mask_gray
        else:
            return images[0], mask_gray

    except Exception as e:
        print(f"Error during try-on: {e}")
        return None, None


# Gradio interface setup
garm_list = os.listdir(os.path.join(example_path, "cloth"))
garm_list_path = [os.path.join(example_path, "cloth", garm) for garm in garm_list]
human_list = os.listdir(os.path.join(example_path, "human"))
human_list_path = [os.path.join(example_path, "human", human) for human in human_list]
human_ex_list = [{"background": ex_human, "layers": None, "composite": None} for ex_human in human_list_path]

# Gradio blocks UI
with gr.Blocks() as image_blocks:
    with gr.Column():
        with gr.Row():
            # imgs = gr.Image(source='upload', type="pil", label='Person Image')
            imgs = gr.Image(type="pil", label='Person Image')  # Remove the 'source' argument
            is_checked = gr.Checkbox(label="Check if mask needed")
            is_checked_crop = gr.Checkbox(label="Check to crop")
            ex_img = gr.Examples(inputs=imgs, examples_per_page=9, examples=human_ex_list)
        with gr.Column():
            garm_img = gr.Image(source='upload', type="pil", label='Cloth')
            garment_des = gr.Textbox(label="Garment Description", value='garment,shirt')
            ex_garm = gr.Examples(inputs=garm_img, examples_per_page=9, examples=garm_list_path)
        with gr.Row():
            denoise_steps = gr.Slider(label="denoise steps", minimum=1, maximum=50, step=1, value=25)
            seed = gr.Slider(label="Seed (for reproducible results)", minimum=0, maximum=2147483647, step=1)
        with gr.Row():
            try_button = gr.Button("Try it on")
        with gr.Row():
            out_img = gr.Image(label="Generated tryon output")
            masked_img = gr.Image(label="Mask")

    try_button.click(
        start_tryon,
        inputs=[imgs, garm_img, garment_des, is_checked, is_checked_crop, denoise_steps, seed],
        outputs=[out_img, masked_img]
    )

# Launch Gradio app
image_blocks.launch(server_name="0.0.0.0", server_port=7860)