Spaces:
Runtime error
Runtime error
File size: 10,237 Bytes
f5708a7 9f9f395 f0fcafe 9f9f395 f0fcafe 9f9f395 f5708a7 9f9f395 f0fcafe 9f9f395 f0fcafe 9f9f395 f0fcafe 9f9f395 f0fcafe 9f9f395 f0fcafe 9f9f395 f0fcafe 9f9f395 f0fcafe 9f9f395 f0fcafe 9f9f395 f0fcafe 9f9f395 f0fcafe 9f9f395 f0fcafe 9f9f395 f0fcafe bfaeb8d f0fcafe 9f9f395 f0fcafe 1c71664 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
# Import spaces first to control GPU initialization
import spaces
# Now import other packages
import torch
import gradio as gr
from PIL import Image
from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline
from src.unet_hacked_garmnet import UNet2DConditionModel as UNet2DConditionModel_ref
from src.unet_hacked_tryon import UNet2DConditionModel
from transformers import (
CLIPImageProcessor,
CLIPVisionModelWithProjection,
CLIPTextModel,
CLIPTextModelWithProjection,
)
from diffusers import DDPMScheduler, AutoencoderKL
from typing import List
import os
from transformers import AutoTokenizer
import numpy as np
from utils_mask import get_mask_location
from torchvision import transforms
import apply_net
from preprocess.humanparsing.run_parsing import Parsing
from preprocess.openpose.run_openpose import OpenPose
from detectron2.data.detection_utils import convert_PIL_to_numpy, _apply_exif_orientation
from torchvision.transforms.functional import to_pil_image
# Rest of your code remains the same...
# Function to convert a PIL image to a binary mask
def pil_to_binary_mask(pil_image, threshold=0):
np_image = np.array(pil_image.convert("L"))
mask = (np_image > threshold).astype(np.uint8) * 255
return Image.fromarray(mask)
# Base paths for pre-trained models and examples
base_path = 'yisol/IDM-VTON'
example_path = os.path.join(os.path.dirname(__file__), 'example')
# Load the UNet model for try-on
unet = UNet2DConditionModel.from_pretrained(base_path, subfolder="unet", torch_dtype=torch.float16)
unet.requires_grad_(False)
# Load tokenizers and other required models
tokenizer_one = AutoTokenizer.from_pretrained(base_path, subfolder="tokenizer", use_fast=False)
tokenizer_two = AutoTokenizer.from_pretrained(base_path, subfolder="tokenizer_2", use_fast=False)
noise_scheduler = DDPMScheduler.from_pretrained(base_path, subfolder="scheduler")
text_encoder_one = CLIPTextModel.from_pretrained(base_path, subfolder="text_encoder", torch_dtype=torch.float16)
text_encoder_two = CLIPTextModelWithProjection.from_pretrained(base_path, subfolder="text_encoder_2", torch_dtype=torch.float16)
image_encoder = CLIPVisionModelWithProjection.from_pretrained(base_path, subfolder="image_encoder", torch_dtype=torch.float16)
vae = AutoencoderKL.from_pretrained(base_path, subfolder="vae", torch_dtype=torch.float16)
UNet_Encoder = UNet2DConditionModel_ref.from_pretrained(base_path, subfolder="unet_encoder", torch_dtype=torch.float16)
# Load parsing and openpose models
parsing_model = Parsing(0)
openpose_model = OpenPose(0)
# Freeze the parameters of the models to avoid gradients
UNet_Encoder.requires_grad_(False)
image_encoder.requires_grad_(False)
vae.requires_grad_(False)
unet.requires_grad_(False)
text_encoder_one.requires_grad_(False)
text_encoder_two.requires_grad_(False)
# Image transformation function
tensor_transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize([0.5], [0.5])])
# Initialize the pipeline for try-on
pipe = TryonPipeline.from_pretrained(
base_path,
unet=unet,
vae=vae,
feature_extractor=CLIPImageProcessor(),
text_encoder=text_encoder_one,
text_encoder_2=text_encoder_two,
tokenizer=tokenizer_one,
tokenizer_2=tokenizer_two,
scheduler=noise_scheduler,
image_encoder=image_encoder,
torch_dtype=torch.float16,
)
pipe.unet_encoder = UNet_Encoder
# Main function for try-on with error handling
@spaces.GPU
def start_tryon(dict, garm_img, garment_des, is_checked, is_checked_crop, denoise_steps, seed):
try:
device = "cuda"
# Prepare the device and models for computation
openpose_model.preprocessor.body_estimation.model.to(device)
pipe.to(device)
pipe.unet_encoder.to(device)
# Prepare the images
garm_img = garm_img.convert("RGB").resize((768, 1024))
human_img_orig = dict["background"].convert("RGB")
# Handle cropping if needed
if is_checked_crop:
width, height = human_img_orig.size
target_width = int(min(width, height * (3 / 4)))
target_height = int(min(height, width * (4 / 3)))
left = (width - target_width) / 2
top = (height - target_height) / 2
right = (width + target_width) / 2
bottom = (height + target_height) / 2
cropped_img = human_img_orig.crop((left, top, right, bottom))
crop_size = cropped_img.size
human_img = cropped_img.resize((768, 1024))
else:
human_img = human_img_orig.resize((768, 1024))
# Apply masking if selected
if is_checked:
keypoints = openpose_model(human_img.resize((384, 512)))
model_parse, _ = parsing_model(human_img.resize((384, 512)))
mask, mask_gray = get_mask_location('hd', "upper_body", model_parse, keypoints)
mask = mask.resize((768, 1024))
else:
mask = pil_to_binary_mask(dict['layers'][0].convert("RGB").resize((768, 1024)))
mask_gray = (1 - transforms.ToTensor()(mask)) * tensor_transform(human_img)
mask_gray = to_pil_image((mask_gray + 1.0) / 2.0)
# Apply pose estimation
human_img_arg = _apply_exif_orientation(human_img.resize((384, 512)))
human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR")
args = apply_net.create_argument_parser().parse_args(
('show', './configs/densepose_rcnn_R_50_FPN_s1x.yaml', './ckpt/densepose/model_final_162be9.pkl', 'dp_segm', '-v', '--opts', 'MODEL.DEVICE', 'cuda')
)
pose_img = args.func(args, human_img_arg)
pose_img = pose_img[:, :, ::-1]
pose_img = Image.fromarray(pose_img).resize((768, 1024))
# Generate the try-on image
with torch.no_grad():
with torch.cuda.amp.autocast():
prompt = "model is wearing " + garment_des
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds = pipe.encode_prompt(
prompt, num_images_per_prompt=1, do_classifier_free_guidance=True, negative_prompt=negative_prompt
)
# Cloth prompt embedding
prompt = "a photo of " + garment_des
prompt_embeds_c, _, _, _ = pipe.encode_prompt(
prompt, num_images_per_prompt=1, do_classifier_free_guidance=False, negative_prompt=negative_prompt
)
# Convert pose image and garment to tensors
pose_img = tensor_transform(pose_img).unsqueeze(0).to(device, torch.float16)
garm_tensor = tensor_transform(garm_img).unsqueeze(0).to(device, torch.float16)
generator = torch.Generator(device).manual_seed(seed) if seed is not None else None
# Run the pipeline
images = pipe(
prompt_embeds=prompt_embeds.to(device, torch.float16),
negative_prompt_embeds=negative_prompt_embeds.to(device, torch.float16),
pooled_prompt_embeds=pooled_prompt_embeds.to(device, torch.float16),
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds.to(device, torch.float16),
num_inference_steps=denoise_steps,
generator=generator,
strength=1.0,
pose_img=pose_img.to(device, torch.float16),
text_embeds_cloth=prompt_embeds_c.to(device, torch.float16),
cloth=garm_tensor.to(device, torch.float16),
mask_image=mask,
image=human_img,
height=1024,
width=768,
ip_adapter_image=garm_img.resize((768, 1024)),
guidance_scale=2.0,
)[0]
if is_checked_crop:
out_img = images[0].resize(crop_size)
human_img_orig.paste(out_img, (int(left), int(top)))
return human_img_orig, mask_gray
else:
return images[0], mask_gray
except Exception as e:
print(f"Error during try-on: {e}")
return None, None
# Gradio interface setup
garm_list = os.listdir(os.path.join(example_path, "cloth"))
garm_list_path = [os.path.join(example_path, "cloth", garm) for garm in garm_list]
human_list = os.listdir(os.path.join(example_path, "human"))
human_list_path = [os.path.join(example_path, "human", human) for human in human_list]
human_ex_list = [{"background": ex_human, "layers": None, "composite": None} for ex_human in human_list_path]
# Gradio blocks UI
with gr.Blocks() as image_blocks:
with gr.Column():
with gr.Row():
# imgs = gr.Image(source='upload', type="pil", label='Person Image')
imgs = gr.Image(type="pil", label='Person Image') # Remove the 'source' argument
is_checked = gr.Checkbox(label="Check if mask needed")
is_checked_crop = gr.Checkbox(label="Check to crop")
ex_img = gr.Examples(inputs=imgs, examples_per_page=9, examples=human_ex_list)
with gr.Column():
garm_img = gr.Image(source='upload', type="pil", label='Cloth')
garment_des = gr.Textbox(label="Garment Description", value='garment,shirt')
ex_garm = gr.Examples(inputs=garm_img, examples_per_page=9, examples=garm_list_path)
with gr.Row():
denoise_steps = gr.Slider(label="denoise steps", minimum=1, maximum=50, step=1, value=25)
seed = gr.Slider(label="Seed (for reproducible results)", minimum=0, maximum=2147483647, step=1)
with gr.Row():
try_button = gr.Button("Try it on")
with gr.Row():
out_img = gr.Image(label="Generated tryon output")
masked_img = gr.Image(label="Mask")
try_button.click(
start_tryon,
inputs=[imgs, garm_img, garment_des, is_checked, is_checked_crop, denoise_steps, seed],
outputs=[out_img, masked_img]
)
# Launch Gradio app
image_blocks.launch(server_name="0.0.0.0", server_port=7860)
|