ML-Motivators commited on
Commit
f0fcafe
·
verified ·
1 Parent(s): 1c71664

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +171 -260
app.py CHANGED
@@ -9,9 +9,8 @@ from transformers import (
9
  CLIPTextModel,
10
  CLIPTextModelWithProjection,
11
  )
12
- from diffusers import DDPMScheduler,AutoencoderKL
13
  from typing import List
14
-
15
  import torch
16
  import os
17
  from transformers import AutoTokenizer
@@ -22,293 +21,205 @@ from torchvision import transforms
22
  import apply_net
23
  from preprocess.humanparsing.run_parsing import Parsing
24
  from preprocess.openpose.run_openpose import OpenPose
25
- from detectron2.data.detection_utils import convert_PIL_to_numpy,_apply_exif_orientation
26
  from torchvision.transforms.functional import to_pil_image
27
 
28
 
 
29
  def pil_to_binary_mask(pil_image, threshold=0):
30
- np_image = np.array(pil_image)
31
- grayscale_image = Image.fromarray(np_image).convert("L")
32
- binary_mask = np.array(grayscale_image) > threshold
33
- mask = np.zeros(binary_mask.shape, dtype=np.uint8)
34
- for i in range(binary_mask.shape[0]):
35
- for j in range(binary_mask.shape[1]):
36
- if binary_mask[i,j] == True :
37
- mask[i,j] = 1
38
- mask = (mask*255).astype(np.uint8)
39
- output_mask = Image.fromarray(mask)
40
- return output_mask
41
 
42
 
 
43
  base_path = 'yisol/IDM-VTON'
44
  example_path = os.path.join(os.path.dirname(__file__), 'example')
45
 
46
- unet = UNet2DConditionModel.from_pretrained(
47
- base_path,
48
- subfolder="unet",
49
- torch_dtype=torch.float16,
50
- )
51
  unet.requires_grad_(False)
52
- tokenizer_one = AutoTokenizer.from_pretrained(
53
- base_path,
54
- subfolder="tokenizer",
55
- revision=None,
56
- use_fast=False,
57
- )
58
- tokenizer_two = AutoTokenizer.from_pretrained(
59
- base_path,
60
- subfolder="tokenizer_2",
61
- revision=None,
62
- use_fast=False,
63
- )
64
- noise_scheduler = DDPMScheduler.from_pretrained(base_path, subfolder="scheduler")
65
-
66
- text_encoder_one = CLIPTextModel.from_pretrained(
67
- base_path,
68
- subfolder="text_encoder",
69
- torch_dtype=torch.float16,
70
- )
71
- text_encoder_two = CLIPTextModelWithProjection.from_pretrained(
72
- base_path,
73
- subfolder="text_encoder_2",
74
- torch_dtype=torch.float16,
75
- )
76
- image_encoder = CLIPVisionModelWithProjection.from_pretrained(
77
- base_path,
78
- subfolder="image_encoder",
79
- torch_dtype=torch.float16,
80
- )
81
- vae = AutoencoderKL.from_pretrained(base_path,
82
- subfolder="vae",
83
- torch_dtype=torch.float16,
84
- )
85
 
86
- # "stabilityai/stable-diffusion-xl-base-1.0",
87
- UNet_Encoder = UNet2DConditionModel_ref.from_pretrained(
88
- base_path,
89
- subfolder="unet_encoder",
90
- torch_dtype=torch.float16,
91
- )
 
 
 
92
 
 
93
  parsing_model = Parsing(0)
94
  openpose_model = OpenPose(0)
95
 
 
96
  UNet_Encoder.requires_grad_(False)
97
  image_encoder.requires_grad_(False)
98
  vae.requires_grad_(False)
99
  unet.requires_grad_(False)
100
  text_encoder_one.requires_grad_(False)
101
  text_encoder_two.requires_grad_(False)
102
- tensor_transfrom = transforms.Compose(
103
- [
104
- transforms.ToTensor(),
105
- transforms.Normalize([0.5], [0.5]),
106
- ]
107
- )
108
 
 
 
 
 
109
  pipe = TryonPipeline.from_pretrained(
110
- base_path,
111
- unet=unet,
112
- vae=vae,
113
- feature_extractor= CLIPImageProcessor(),
114
- text_encoder = text_encoder_one,
115
- text_encoder_2 = text_encoder_two,
116
- tokenizer = tokenizer_one,
117
- tokenizer_2 = tokenizer_two,
118
- scheduler = noise_scheduler,
119
- image_encoder=image_encoder,
120
- torch_dtype=torch.float16,
121
  )
122
  pipe.unet_encoder = UNet_Encoder
123
 
124
- @spaces.GPU
125
- def start_tryon(dict,garm_img,garment_des,is_checked,is_checked_crop,denoise_steps,seed):
126
- device = "cuda"
127
-
128
- openpose_model.preprocessor.body_estimation.model.to(device)
129
- pipe.to(device)
130
- pipe.unet_encoder.to(device)
131
-
132
- garm_img= garm_img.convert("RGB").resize((768,1024))
133
- human_img_orig = dict["background"].convert("RGB")
134
-
135
- if is_checked_crop:
136
- width, height = human_img_orig.size
137
- target_width = int(min(width, height * (3 / 4)))
138
- target_height = int(min(height, width * (4 / 3)))
139
- left = (width - target_width) / 2
140
- top = (height - target_height) / 2
141
- right = (width + target_width) / 2
142
- bottom = (height + target_height) / 2
143
- cropped_img = human_img_orig.crop((left, top, right, bottom))
144
- crop_size = cropped_img.size
145
- human_img = cropped_img.resize((768,1024))
146
- else:
147
- human_img = human_img_orig.resize((768,1024))
148
-
149
-
150
- if is_checked:
151
- keypoints = openpose_model(human_img.resize((384,512)))
152
- model_parse, _ = parsing_model(human_img.resize((384,512)))
153
- mask, mask_gray = get_mask_location('hd', "upper_body", model_parse, keypoints)
154
- mask = mask.resize((768,1024))
155
- else:
156
- mask = pil_to_binary_mask(dict['layers'][0].convert("RGB").resize((768, 1024)))
157
- # mask = transforms.ToTensor()(mask)
158
- # mask = mask.unsqueeze(0)
159
- mask_gray = (1-transforms.ToTensor()(mask)) * tensor_transfrom(human_img)
160
- mask_gray = to_pil_image((mask_gray+1.0)/2.0)
161
 
162
-
163
- human_img_arg = _apply_exif_orientation(human_img.resize((384,512)))
164
- human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR")
165
-
166
-
167
-
168
- args = apply_net.create_argument_parser().parse_args(('show', './configs/densepose_rcnn_R_50_FPN_s1x.yaml', './ckpt/densepose/model_final_162be9.pkl', 'dp_segm', '-v', '--opts', 'MODEL.DEVICE', 'cuda'))
169
- # verbosity = getattr(args, "verbosity", None)
170
- pose_img = args.func(args,human_img_arg)
171
- pose_img = pose_img[:,:,::-1]
172
- pose_img = Image.fromarray(pose_img).resize((768,1024))
173
-
174
- with torch.no_grad():
175
- # Extract the images
176
- with torch.cuda.amp.autocast():
177
- with torch.no_grad():
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
178
  prompt = "model is wearing " + garment_des
179
  negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
180
- with torch.inference_mode():
181
- (
182
- prompt_embeds,
183
- negative_prompt_embeds,
184
- pooled_prompt_embeds,
185
- negative_pooled_prompt_embeds,
186
- ) = pipe.encode_prompt(
187
- prompt,
188
- num_images_per_prompt=1,
189
- do_classifier_free_guidance=True,
190
- negative_prompt=negative_prompt,
191
- )
192
-
193
- prompt = "a photo of " + garment_des
194
- negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
195
- if not isinstance(prompt, List):
196
- prompt = [prompt] * 1
197
- if not isinstance(negative_prompt, List):
198
- negative_prompt = [negative_prompt] * 1
199
- with torch.inference_mode():
200
- (
201
- prompt_embeds_c,
202
- _,
203
- _,
204
- _,
205
- ) = pipe.encode_prompt(
206
- prompt,
207
- num_images_per_prompt=1,
208
- do_classifier_free_guidance=False,
209
- negative_prompt=negative_prompt,
210
- )
211
-
212
-
213
-
214
- pose_img = tensor_transfrom(pose_img).unsqueeze(0).to(device,torch.float16)
215
- garm_tensor = tensor_transfrom(garm_img).unsqueeze(0).to(device,torch.float16)
216
- generator = torch.Generator(device).manual_seed(seed) if seed is not None else None
217
- images = pipe(
218
- prompt_embeds=prompt_embeds.to(device,torch.float16),
219
- negative_prompt_embeds=negative_prompt_embeds.to(device,torch.float16),
220
- pooled_prompt_embeds=pooled_prompt_embeds.to(device,torch.float16),
221
- negative_pooled_prompt_embeds=negative_pooled_prompt_embeds.to(device,torch.float16),
222
- num_inference_steps=denoise_steps,
223
- generator=generator,
224
- strength = 1.0,
225
- pose_img = pose_img.to(device,torch.float16),
226
- text_embeds_cloth=prompt_embeds_c.to(device,torch.float16),
227
- cloth = garm_tensor.to(device,torch.float16),
228
- mask_image=mask,
229
- image=human_img,
230
- height=1024,
231
- width=768,
232
- ip_adapter_image = garm_img.resize((768,1024)),
233
- guidance_scale=2.0,
234
- )[0]
235
-
236
- if is_checked_crop:
237
- out_img = images[0].resize(crop_size)
238
- human_img_orig.paste(out_img, (int(left), int(top)))
239
- return human_img_orig, mask_gray
240
- else:
241
- return images[0], mask_gray
242
- # return images[0], mask_gray
243
-
244
- garm_list = os.listdir(os.path.join(example_path,"cloth"))
245
- garm_list_path = [os.path.join(example_path,"cloth",garm) for garm in garm_list]
246
-
247
- human_list = os.listdir(os.path.join(example_path,"human"))
248
- human_list_path = [os.path.join(example_path,"human",human) for human in human_list]
249
-
250
- human_ex_list = []
251
- for ex_human in human_list_path:
252
- ex_dict= {}
253
- ex_dict['background'] = ex_human
254
- ex_dict['layers'] = None
255
- ex_dict['composite'] = None
256
- human_ex_list.append(ex_dict)
257
-
258
- ##default human
259
-
260
-
261
- image_blocks = gr.Blocks().queue()
262
- with image_blocks as demo:
263
- gr.Markdown("## IDM-VTON 👕👔👚")
264
- # gr.Markdown("Virtual Try-on with your image and garment image. Check out the [source codes](https://github.com/yisol/IDM-VTON) and the [model](https://huggingface.co/yisol/IDM-VTON)")
265
- with gr.Row():
266
- with gr.Column():
267
- imgs = gr.ImageEditor(sources='upload', type="pil", label='Human. Mask with pen or use auto-masking', interactive=True)
268
- with gr.Row():
269
- is_checked = gr.Checkbox(label="Yes", info="Use auto-generated mask (Takes 5 seconds)",value=True)
270
- with gr.Row():
271
- is_checked_crop = gr.Checkbox(label="Yes", info="Use auto-crop & resizing",value=False)
272
-
273
- example = gr.Examples(
274
- inputs=imgs,
275
- examples_per_page=10,
276
- examples=human_ex_list
277
- )
278
-
279
- with gr.Column():
280
- garm_img = gr.Image(label="Garment", sources='upload', type="pil")
281
- with gr.Row(elem_id="prompt-container"):
282
- with gr.Row():
283
- prompt = gr.Textbox(placeholder="Description of garment ex) Short Sleeve Round Neck T-shirts", show_label=False, elem_id="prompt")
284
- example = gr.Examples(
285
- inputs=garm_img,
286
- examples_per_page=8,
287
- examples=garm_list_path)
288
- with gr.Column():
289
- # image_out = gr.Image(label="Output", elem_id="output-img", height=400)
290
- masked_img = gr.Image(label="Masked image output", elem_id="masked-img",show_share_button=False)
291
- with gr.Column():
292
- # image_out = gr.Image(label="Output", elem_id="output-img", height=400)
293
- image_out = gr.Image(label="Output", elem_id="output-img",show_share_button=False)
294
-
295
-
296
-
297
-
298
  with gr.Column():
299
- try_button = gr.Button(value="Try-on")
300
- with gr.Accordion(label="Advanced Settings", open=False):
301
- with gr.Row():
302
- denoise_steps = gr.Number(label="Denoising Steps", minimum=20, maximum=40, value=30, step=1)
303
- seed = gr.Number(label="Seed", minimum=-1, maximum=2147483647, step=1, value=42)
304
-
305
-
306
-
307
- try_button.click(fn=start_tryon, inputs=[imgs, garm_img, prompt, is_checked,is_checked_crop, denoise_steps, seed], outputs=[image_out,masked_img], api_name='tryon')
308
-
309
-
310
-
 
 
 
 
 
 
 
 
 
 
 
311
 
312
- image_blocks.launch(share=True)
313
  image_blocks.launch(server_name="0.0.0.0", server_port=7860)
314
-
 
9
  CLIPTextModel,
10
  CLIPTextModelWithProjection,
11
  )
12
+ from diffusers import DDPMScheduler, AutoencoderKL
13
  from typing import List
 
14
  import torch
15
  import os
16
  from transformers import AutoTokenizer
 
21
  import apply_net
22
  from preprocess.humanparsing.run_parsing import Parsing
23
  from preprocess.openpose.run_openpose import OpenPose
24
+ from detectron2.data.detection_utils import convert_PIL_to_numpy, _apply_exif_orientation
25
  from torchvision.transforms.functional import to_pil_image
26
 
27
 
28
+ # Function to convert a PIL image to a binary mask
29
  def pil_to_binary_mask(pil_image, threshold=0):
30
+ np_image = np.array(pil_image.convert("L"))
31
+ mask = (np_image > threshold).astype(np.uint8) * 255
32
+ return Image.fromarray(mask)
 
 
 
 
 
 
 
 
33
 
34
 
35
+ # Base paths for pre-trained models and examples
36
  base_path = 'yisol/IDM-VTON'
37
  example_path = os.path.join(os.path.dirname(__file__), 'example')
38
 
39
+ # Load the UNet model for try-on
40
+ unet = UNet2DConditionModel.from_pretrained(base_path, subfolder="unet", torch_dtype=torch.float16)
 
 
 
41
  unet.requires_grad_(False)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42
 
43
+ # Load tokenizers and other required models
44
+ tokenizer_one = AutoTokenizer.from_pretrained(base_path, subfolder="tokenizer", use_fast=False)
45
+ tokenizer_two = AutoTokenizer.from_pretrained(base_path, subfolder="tokenizer_2", use_fast=False)
46
+ noise_scheduler = DDPMScheduler.from_pretrained(base_path, subfolder="scheduler")
47
+ text_encoder_one = CLIPTextModel.from_pretrained(base_path, subfolder="text_encoder", torch_dtype=torch.float16)
48
+ text_encoder_two = CLIPTextModelWithProjection.from_pretrained(base_path, subfolder="text_encoder_2", torch_dtype=torch.float16)
49
+ image_encoder = CLIPVisionModelWithProjection.from_pretrained(base_path, subfolder="image_encoder", torch_dtype=torch.float16)
50
+ vae = AutoencoderKL.from_pretrained(base_path, subfolder="vae", torch_dtype=torch.float16)
51
+ UNet_Encoder = UNet2DConditionModel_ref.from_pretrained(base_path, subfolder="unet_encoder", torch_dtype=torch.float16)
52
 
53
+ # Load parsing and openpose models
54
  parsing_model = Parsing(0)
55
  openpose_model = OpenPose(0)
56
 
57
+ # Freeze the parameters of the models to avoid gradients
58
  UNet_Encoder.requires_grad_(False)
59
  image_encoder.requires_grad_(False)
60
  vae.requires_grad_(False)
61
  unet.requires_grad_(False)
62
  text_encoder_one.requires_grad_(False)
63
  text_encoder_two.requires_grad_(False)
 
 
 
 
 
 
64
 
65
+ # Image transformation function
66
+ tensor_transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize([0.5], [0.5])])
67
+
68
+ # Initialize the pipeline for try-on
69
  pipe = TryonPipeline.from_pretrained(
70
+ base_path,
71
+ unet=unet,
72
+ vae=vae,
73
+ feature_extractor=CLIPImageProcessor(),
74
+ text_encoder=text_encoder_one,
75
+ text_encoder_2=text_encoder_two,
76
+ tokenizer=tokenizer_one,
77
+ tokenizer_2=tokenizer_two,
78
+ scheduler=noise_scheduler,
79
+ image_encoder=image_encoder,
80
+ torch_dtype=torch.float16,
81
  )
82
  pipe.unet_encoder = UNet_Encoder
83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84
 
85
+ # Main function for try-on with error handling
86
+ @spaces.GPU
87
+ def start_tryon(dict, garm_img, garment_des, is_checked, is_checked_crop, denoise_steps, seed):
88
+ try:
89
+ device = "cuda"
90
+
91
+ # Prepare the device and models for computation
92
+ openpose_model.preprocessor.body_estimation.model.to(device)
93
+ pipe.to(device)
94
+ pipe.unet_encoder.to(device)
95
+
96
+ # Prepare the images
97
+ garm_img = garm_img.convert("RGB").resize((768, 1024))
98
+ human_img_orig = dict["background"].convert("RGB")
99
+
100
+ # Handle cropping if needed
101
+ if is_checked_crop:
102
+ width, height = human_img_orig.size
103
+ target_width = int(min(width, height * (3 / 4)))
104
+ target_height = int(min(height, width * (4 / 3)))
105
+ left = (width - target_width) / 2
106
+ top = (height - target_height) / 2
107
+ right = (width + target_width) / 2
108
+ bottom = (height + target_height) / 2
109
+ cropped_img = human_img_orig.crop((left, top, right, bottom))
110
+ crop_size = cropped_img.size
111
+ human_img = cropped_img.resize((768, 1024))
112
+ else:
113
+ human_img = human_img_orig.resize((768, 1024))
114
+
115
+ # Apply masking if selected
116
+ if is_checked:
117
+ keypoints = openpose_model(human_img.resize((384, 512)))
118
+ model_parse, _ = parsing_model(human_img.resize((384, 512)))
119
+ mask, mask_gray = get_mask_location('hd', "upper_body", model_parse, keypoints)
120
+ mask = mask.resize((768, 1024))
121
+ else:
122
+ mask = pil_to_binary_mask(dict['layers'][0].convert("RGB").resize((768, 1024)))
123
+
124
+ mask_gray = (1 - transforms.ToTensor()(mask)) * tensor_transform(human_img)
125
+ mask_gray = to_pil_image((mask_gray + 1.0) / 2.0)
126
+
127
+ # Apply pose estimation
128
+ human_img_arg = _apply_exif_orientation(human_img.resize((384, 512)))
129
+ human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR")
130
+
131
+ args = apply_net.create_argument_parser().parse_args(
132
+ ('show', './configs/densepose_rcnn_R_50_FPN_s1x.yaml', './ckpt/densepose/model_final_162be9.pkl', 'dp_segm', '-v', '--opts', 'MODEL.DEVICE', 'cuda')
133
+ )
134
+ pose_img = args.func(args, human_img_arg)
135
+ pose_img = pose_img[:, :, ::-1]
136
+ pose_img = Image.fromarray(pose_img).resize((768, 1024))
137
+
138
+ # Generate the try-on image
139
+ with torch.no_grad():
140
+ with torch.cuda.amp.autocast():
141
  prompt = "model is wearing " + garment_des
142
  negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
143
+ prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds = pipe.encode_prompt(
144
+ prompt, num_images_per_prompt=1, do_classifier_free_guidance=True, negative_prompt=negative_prompt
145
+ )
146
+
147
+ # Cloth prompt embedding
148
+ prompt = "a photo of " + garment_des
149
+ prompt_embeds_c, _, _, _ = pipe.encode_prompt(
150
+ prompt, num_images_per_prompt=1, do_classifier_free_guidance=False, negative_prompt=negative_prompt
151
+ )
152
+
153
+ # Convert pose image and garment to tensors
154
+ pose_img = tensor_transform(pose_img).unsqueeze(0).to(device, torch.float16)
155
+ garm_tensor = tensor_transform(garm_img).unsqueeze(0).to(device, torch.float16)
156
+ generator = torch.Generator(device).manual_seed(seed) if seed is not None else None
157
+
158
+ # Run the pipeline
159
+ images = pipe(
160
+ prompt_embeds=prompt_embeds.to(device, torch.float16),
161
+ negative_prompt_embeds=negative_prompt_embeds.to(device, torch.float16),
162
+ pooled_prompt_embeds=pooled_prompt_embeds.to(device, torch.float16),
163
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds.to(device, torch.float16),
164
+ num_inference_steps=denoise_steps,
165
+ generator=generator,
166
+ strength=1.0,
167
+ pose_img=pose_img.to(device, torch.float16),
168
+ text_embeds_cloth=prompt_embeds_c.to(device, torch.float16),
169
+ cloth=garm_tensor.to(device, torch.float16),
170
+ mask_image=mask,
171
+ image=human_img,
172
+ height=1024,
173
+ width=768,
174
+ ip_adapter_image=garm_img.resize((768, 1024)),
175
+ guidance_scale=2.0,
176
+ )[0]
177
+
178
+ if is_checked_crop:
179
+ out_img = images[0].resize(crop_size)
180
+ human_img_orig.paste(out_img, (int(left), int(top)))
181
+ return human_img_orig, mask_gray
182
+ else:
183
+ return images[0], mask_gray
184
+
185
+ except Exception as e:
186
+ print(f"Error during try-on: {e}")
187
+ return None, None
188
+
189
+
190
+ # Gradio interface setup
191
+ garm_list = os.listdir(os.path.join(example_path, "cloth"))
192
+ garm_list_path = [os.path.join(example_path, "cloth", garm) for garm in garm_list]
193
+ human_list = os.listdir(os.path.join(example_path, "human"))
194
+ human_list_path = [os.path.join(example_path, "human", human) for human in human_list]
195
+ human_ex_list = [{"background": ex_human, "layers": None, "composite": None} for ex_human in human_list_path]
196
+
197
+ # Gradio blocks UI
198
+ with gr.Blocks() as image_blocks:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
199
  with gr.Column():
200
+ with gr.Row():
201
+ imgs = gr.Image(source='upload', type="pil", label='Person Image')
202
+ is_checked = gr.Checkbox(label="Check if mask needed")
203
+ is_checked_crop = gr.Checkbox(label="Check to crop")
204
+ ex_img = gr.Examples(inputs=imgs, examples_per_page=9, examples=human_ex_list)
205
+ with gr.Column():
206
+ garm_img = gr.Image(source='upload', type="pil", label='Cloth')
207
+ garment_des = gr.Textbox(label="Garment Description", value='garment,shirt')
208
+ ex_garm = gr.Examples(inputs=garm_img, examples_per_page=9, examples=garm_list_path)
209
+ with gr.Row():
210
+ denoise_steps = gr.Slider(label="denoise steps", minimum=1, maximum=50, step=1, value=25)
211
+ seed = gr.Slider(label="Seed (for reproducible results)", minimum=0, maximum=2147483647, step=1)
212
+ with gr.Row():
213
+ try_button = gr.Button("Try it on")
214
+ with gr.Row():
215
+ out_img = gr.Image(label="Generated tryon output")
216
+ masked_img = gr.Image(label="Mask")
217
+
218
+ try_button.click(
219
+ start_tryon,
220
+ inputs=[imgs, garm_img, garment_des, is_checked, is_checked_crop, denoise_steps, seed],
221
+ outputs=[out_img, masked_img]
222
+ )
223
 
224
+ # Launch Gradio app
225
  image_blocks.launch(server_name="0.0.0.0", server_port=7860)