File size: 6,145 Bytes
7fcd557
6bcbc7b
24a059f
 
e109361
24a059f
 
 
e109361
7fcd557
c308901
e109361
fb73da9
e109361
fb73da9
e109361
 
 
 
 
 
 
 
 
 
 
 
 
6bcbc7b
e109361
6bcbc7b
e109361
6bcbc7b
e109361
 
 
 
 
 
 
24a059f
9f7748a
 
e109361
9f7748a
 
 
 
 
 
 
 
 
 
e109361
 
9f7748a
e109361
9f7748a
e109361
9f7748a
e109361
 
 
 
 
 
 
 
 
 
9f7748a
1fe4357
8f89713
1fe4357
8f89713
e109361
 
104bf5a
8f89713
104bf5a
8f89713
 
e109361
8f89713
e109361
 
 
8f89713
 
 
6bcbc7b
8f89713
 
 
 
 
6bcbc7b
8f89713
 
 
 
1fe4357
8f89713
 
 
 
 
 
1fe4357
 
 
 
 
 
8f89713
 
 
e109361
 
 
6bcbc7b
7fcd557
e109361
8f89713
7fcd557
8f89713
7fcd557
 
1fe4357
 
7fcd557
104bf5a
ca6bd07
8f89713
ca6bd07
 
 
8f89713
7fcd557
1fe4357
 
104bf5a
7fcd557
8f89713
 
7fcd557
 
 
 
 
 
 
8f89713
 
 
 
 
 
7fcd557
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

# demo.launch()
import gradio as gr
import pandas as pd
import os
import re
from datetime import datetime

LEADERBOARD_FILE = "leaderboard.csv"  # File to store all submissions persistently
LAST_UPDATED = datetime.now().strftime("%B %d, %Y")

def initialize_leaderboard_file():
    """
    Ensure the leaderboard file exists and has the correct headers.
    """
    if not os.path.exists(LEADERBOARD_FILE):
        # Create the file with headers
        pd.DataFrame(columns=[
            "Model Name", "Overall Accuracy", "Valid Accuracy",
            "Correct Predictions", "Total Questions", "Timestamp"
        ]).to_csv(LEADERBOARD_FILE, index=False)
    else:
        # Check if the file is empty and write headers if needed
        if os.stat(LEADERBOARD_FILE).st_size == 0:
            pd.DataFrame(columns=[
                "Model Name", "Overall Accuracy", "Valid Accuracy",
                "Correct Predictions", "Total Questions", "Timestamp"
            ]).to_csv(LEADERBOARD_FILE, index=False)

def clean_answer(answer):
    """
    Clean and normalize the predicted answers.
    """
    if pd.isna(answer):
        return None
    answer = str(answer)
    clean = re.sub(r'[^A-Da-d]', '', answer)
    if clean:
        return clean[0].upper()
    return None

def update_leaderboard(results):
    """
    Append new submission results to the leaderboard file.
    """
    new_entry = {
        "Model Name": results['model_name'],
        "Overall Accuracy": round(results['overall_accuracy'] * 100, 2),
        "Valid Accuracy": round(results['valid_accuracy'] * 100, 2),
        "Correct Predictions": results['correct_predictions'],
        "Total Questions": results['total_questions'],
        "Timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
    }

    new_entry_df = pd.DataFrame([new_entry])
    new_entry_df.to_csv(LEADERBOARD_FILE, mode='a', index=False, header=False)

def load_leaderboard():
    """
    Load all submissions from the leaderboard file.
    """
    if not os.path.exists(LEADERBOARD_FILE) or os.stat(LEADERBOARD_FILE).st_size == 0:
        return pd.DataFrame({
            "Model Name": [],
            "Overall Accuracy": [],
            "Valid Accuracy": [],
            "Correct Predictions": [],
            "Total Questions": [],
            "Timestamp": [],
        })
    return pd.read_csv(LEADERBOARD_FILE)

def evaluate_predictions(prediction_file, model_name, add_to_leaderboard):
    """
    Evaluate predictions and optionally add results to the leaderboard.
    """
    ground_truth_file = "ground_truth.csv"
    if not os.path.exists(ground_truth_file):
        return "Ground truth file not found.", load_leaderboard()
    if not prediction_file:
        return "Prediction file not uploaded.", load_leaderboard()

    try:
        # Load predictions and ground truth
        predictions_df = pd.read_csv(prediction_file.name)
        ground_truth_df = pd.read_csv(ground_truth_file)

        # Merge predictions with ground truth
        merged_df = pd.merge(predictions_df, ground_truth_df, on='question_id', how='inner')
        merged_df['pred_answer'] = merged_df['predicted_answer'].apply(clean_answer)

        # Evaluate predictions
        valid_predictions = merged_df.dropna(subset=['pred_answer'])
        correct_predictions = (valid_predictions['pred_answer'] == valid_predictions['Answer']).sum()
        total_predictions = len(merged_df)
        total_valid_predictions = len(valid_predictions)

        # Calculate accuracy
        overall_accuracy = correct_predictions / total_predictions if total_predictions > 0 else 0
        valid_accuracy = correct_predictions / total_valid_predictions if total_valid_predictions > 0 else 0

        results = {
            'model_name': model_name if model_name else "Unknown Model",
            'overall_accuracy': overall_accuracy,
            'valid_accuracy': valid_accuracy,
            'correct_predictions': correct_predictions,
            'total_questions': total_predictions,
        }

        # Update leaderboard only if opted in
        if add_to_leaderboard:
            update_leaderboard(results)
            return "Evaluation completed and added to leaderboard.", load_leaderboard()
        else:
            return "Evaluation completed but not added to leaderboard.", load_leaderboard()
    except Exception as e:
        return f"Error during evaluation: {str(e)}", load_leaderboard()

# Initialize leaderboard file
initialize_leaderboard_file()

# Gradio Interface
with gr.Blocks() as demo:
    gr.Markdown("# Prediction Evaluation Tool with Leaderboard")
    
    with gr.Tabs():
        # Submission Tab
        with gr.TabItem("πŸ… Submission"):
            file_input = gr.File(label="Upload Prediction CSV")
            model_name_input = gr.Textbox(label="Model Name", placeholder="Enter your model name")
            add_to_leaderboard_checkbox = gr.Checkbox(label="Add to Leaderboard?", value=True)
            eval_status = gr.Textbox(label="Evaluation Status", interactive=False)
            leaderboard_table_preview = gr.Dataframe(
                value=load_leaderboard(),
                label="Leaderboard (Preview)",
                interactive=False,
                wrap=True,
            )
            eval_button = gr.Button("Evaluate and Update Leaderboard")
            eval_button.click(
                evaluate_predictions,
                inputs=[file_input, model_name_input, add_to_leaderboard_checkbox],
                outputs=[eval_status, leaderboard_table_preview],
            )
        
        # Leaderboard Tab
        with gr.TabItem("πŸ… Leaderboard"):
            leaderboard_table = gr.Dataframe(
                value=load_leaderboard(),
                label="Leaderboard",
                interactive=False,
                wrap=True,
            )
            refresh_button = gr.Button("Refresh Leaderboard")
            refresh_button.click(
                lambda: load_leaderboard(),
                inputs=[],
                outputs=[leaderboard_table],
            )

    gr.Markdown(f"Last updated on **{LAST_UPDATED}**")

demo.launch()