File size: 6,145 Bytes
7fcd557 6bcbc7b 24a059f e109361 24a059f e109361 7fcd557 c308901 e109361 fb73da9 e109361 fb73da9 e109361 6bcbc7b e109361 6bcbc7b e109361 6bcbc7b e109361 24a059f 9f7748a e109361 9f7748a e109361 9f7748a e109361 9f7748a e109361 9f7748a e109361 9f7748a 1fe4357 8f89713 1fe4357 8f89713 e109361 104bf5a 8f89713 104bf5a 8f89713 e109361 8f89713 e109361 8f89713 6bcbc7b 8f89713 6bcbc7b 8f89713 1fe4357 8f89713 1fe4357 8f89713 e109361 6bcbc7b 7fcd557 e109361 8f89713 7fcd557 8f89713 7fcd557 1fe4357 7fcd557 104bf5a ca6bd07 8f89713 ca6bd07 8f89713 7fcd557 1fe4357 104bf5a 7fcd557 8f89713 7fcd557 8f89713 7fcd557 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
# demo.launch()
import gradio as gr
import pandas as pd
import os
import re
from datetime import datetime
LEADERBOARD_FILE = "leaderboard.csv" # File to store all submissions persistently
LAST_UPDATED = datetime.now().strftime("%B %d, %Y")
def initialize_leaderboard_file():
"""
Ensure the leaderboard file exists and has the correct headers.
"""
if not os.path.exists(LEADERBOARD_FILE):
# Create the file with headers
pd.DataFrame(columns=[
"Model Name", "Overall Accuracy", "Valid Accuracy",
"Correct Predictions", "Total Questions", "Timestamp"
]).to_csv(LEADERBOARD_FILE, index=False)
else:
# Check if the file is empty and write headers if needed
if os.stat(LEADERBOARD_FILE).st_size == 0:
pd.DataFrame(columns=[
"Model Name", "Overall Accuracy", "Valid Accuracy",
"Correct Predictions", "Total Questions", "Timestamp"
]).to_csv(LEADERBOARD_FILE, index=False)
def clean_answer(answer):
"""
Clean and normalize the predicted answers.
"""
if pd.isna(answer):
return None
answer = str(answer)
clean = re.sub(r'[^A-Da-d]', '', answer)
if clean:
return clean[0].upper()
return None
def update_leaderboard(results):
"""
Append new submission results to the leaderboard file.
"""
new_entry = {
"Model Name": results['model_name'],
"Overall Accuracy": round(results['overall_accuracy'] * 100, 2),
"Valid Accuracy": round(results['valid_accuracy'] * 100, 2),
"Correct Predictions": results['correct_predictions'],
"Total Questions": results['total_questions'],
"Timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
}
new_entry_df = pd.DataFrame([new_entry])
new_entry_df.to_csv(LEADERBOARD_FILE, mode='a', index=False, header=False)
def load_leaderboard():
"""
Load all submissions from the leaderboard file.
"""
if not os.path.exists(LEADERBOARD_FILE) or os.stat(LEADERBOARD_FILE).st_size == 0:
return pd.DataFrame({
"Model Name": [],
"Overall Accuracy": [],
"Valid Accuracy": [],
"Correct Predictions": [],
"Total Questions": [],
"Timestamp": [],
})
return pd.read_csv(LEADERBOARD_FILE)
def evaluate_predictions(prediction_file, model_name, add_to_leaderboard):
"""
Evaluate predictions and optionally add results to the leaderboard.
"""
ground_truth_file = "ground_truth.csv"
if not os.path.exists(ground_truth_file):
return "Ground truth file not found.", load_leaderboard()
if not prediction_file:
return "Prediction file not uploaded.", load_leaderboard()
try:
# Load predictions and ground truth
predictions_df = pd.read_csv(prediction_file.name)
ground_truth_df = pd.read_csv(ground_truth_file)
# Merge predictions with ground truth
merged_df = pd.merge(predictions_df, ground_truth_df, on='question_id', how='inner')
merged_df['pred_answer'] = merged_df['predicted_answer'].apply(clean_answer)
# Evaluate predictions
valid_predictions = merged_df.dropna(subset=['pred_answer'])
correct_predictions = (valid_predictions['pred_answer'] == valid_predictions['Answer']).sum()
total_predictions = len(merged_df)
total_valid_predictions = len(valid_predictions)
# Calculate accuracy
overall_accuracy = correct_predictions / total_predictions if total_predictions > 0 else 0
valid_accuracy = correct_predictions / total_valid_predictions if total_valid_predictions > 0 else 0
results = {
'model_name': model_name if model_name else "Unknown Model",
'overall_accuracy': overall_accuracy,
'valid_accuracy': valid_accuracy,
'correct_predictions': correct_predictions,
'total_questions': total_predictions,
}
# Update leaderboard only if opted in
if add_to_leaderboard:
update_leaderboard(results)
return "Evaluation completed and added to leaderboard.", load_leaderboard()
else:
return "Evaluation completed but not added to leaderboard.", load_leaderboard()
except Exception as e:
return f"Error during evaluation: {str(e)}", load_leaderboard()
# Initialize leaderboard file
initialize_leaderboard_file()
# Gradio Interface
with gr.Blocks() as demo:
gr.Markdown("# Prediction Evaluation Tool with Leaderboard")
with gr.Tabs():
# Submission Tab
with gr.TabItem("π
Submission"):
file_input = gr.File(label="Upload Prediction CSV")
model_name_input = gr.Textbox(label="Model Name", placeholder="Enter your model name")
add_to_leaderboard_checkbox = gr.Checkbox(label="Add to Leaderboard?", value=True)
eval_status = gr.Textbox(label="Evaluation Status", interactive=False)
leaderboard_table_preview = gr.Dataframe(
value=load_leaderboard(),
label="Leaderboard (Preview)",
interactive=False,
wrap=True,
)
eval_button = gr.Button("Evaluate and Update Leaderboard")
eval_button.click(
evaluate_predictions,
inputs=[file_input, model_name_input, add_to_leaderboard_checkbox],
outputs=[eval_status, leaderboard_table_preview],
)
# Leaderboard Tab
with gr.TabItem("π
Leaderboard"):
leaderboard_table = gr.Dataframe(
value=load_leaderboard(),
label="Leaderboard",
interactive=False,
wrap=True,
)
refresh_button = gr.Button("Refresh Leaderboard")
refresh_button.click(
lambda: load_leaderboard(),
inputs=[],
outputs=[leaderboard_table],
)
gr.Markdown(f"Last updated on **{LAST_UPDATED}**")
demo.launch()
|