File size: 15,895 Bytes
7fcd557
d24563e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6bcbc7b
d24563e
 
24a059f
 
e109361
24a059f
 
d24563e
aeeda1a
24a059f
13e4c4d
 
7fcd557
c308901
13e4c4d
d24563e
13e4c4d
 
 
d24563e
e109361
fb73da9
e109361
fb73da9
e109361
 
 
 
 
13e4c4d
 
 
 
 
6bcbc7b
e109361
 
 
 
 
13e4c4d
24a059f
8b80c42
9f7748a
8b80c42
 
 
2f1a209
 
 
 
 
 
 
 
 
d67bb93
8b80c42
d67bb93
8b80c42
 
2f1a209
 
 
 
8b80c42
2f1a209
8b80c42
 
 
 
 
 
 
 
 
 
 
 
d30a8bb
 
8b80c42
d67bb93
8b80c42
2f1a209
d67bb93
9f7748a
e109361
 
 
 
 
 
 
 
 
 
 
9f7748a
1fe4357
d24563e
 
 
13e4c4d
 
d24563e
 
 
13e4c4d
 
d24563e
 
 
8f89713
104bf5a
8f89713
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1fe4357
8f89713
 
 
 
 
 
1fe4357
 
 
 
 
2f1a209
8f89713
 
 
e109361
1f0c8bc
7fcd557
d51aeb7
 
 
a45bd57
 
 
d51aeb7
 
d24563e
7fcd557
d51aeb7
 
1f0c8bc
 
c2fa8d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54aa8d9
c2fa8d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d51aeb7
 
a45bd57
c2fa8d0
 
 
a45bd57
c2fa8d0
1f0c8bc
c2fa8d0
 
 
7fcd557
c2fa8d0
fca838b
 
 
 
 
 
 
 
7fcd557
fca838b
1fe4357
c2fa8d0
7fcd557
d24563e
7fcd557
 
 
 
 
 
 
8f89713
 
 
 
 
 
7fcd557
 
 
 
d24563e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424

# # demo.launch()
# import gradio as gr
# import pandas as pd
# import os
# import re
# from datetime import datetime

# LEADERBOARD_FILE = "leaderboard.csv"  # File to store all submissions persistently
# LAST_UPDATED = datetime.now().strftime("%B %d, %Y")

# def initialize_leaderboard_file():
#     """
#     Ensure the leaderboard file exists and has the correct headers.
#     """
#     if not os.path.exists(LEADERBOARD_FILE):
#         # Create the file with headers
#         pd.DataFrame(columns=[
#             "Model Name", "Overall Accuracy", "Valid Accuracy",
#             "Correct Predictions", "Total Questions", "Timestamp"
#         ]).to_csv(LEADERBOARD_FILE, index=False)
#     else:
#         # Check if the file is empty and write headers if needed
#         if os.stat(LEADERBOARD_FILE).st_size == 0:
#             pd.DataFrame(columns=[
#                 "Model Name", "Overall Accuracy", "Valid Accuracy",
#                 "Correct Predictions", "Total Questions", "Timestamp"
#             ]).to_csv(LEADERBOARD_FILE, index=False)

# def clean_answer(answer):
#     """
#     Clean and normalize the predicted answers.
#     """
#     if pd.isna(answer):
#         return None
#     answer = str(answer)
#     clean = re.sub(r'[^A-Da-d]', '', answer)
#     if clean:
#         return clean[0].upper()
#     return None

# def update_leaderboard(results):
#     """
#     Append new submission results to the leaderboard file.
#     """
#     new_entry = {
#         "Model Name": results['model_name'],
#         "Overall Accuracy": round(results['overall_accuracy'] * 100, 2),
#         "Valid Accuracy": round(results['valid_accuracy'] * 100, 2),
#         "Correct Predictions": results['correct_predictions'],
#         "Total Questions": results['total_questions'],
#         "Timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
#     }

#     new_entry_df = pd.DataFrame([new_entry])
#     new_entry_df.to_csv(LEADERBOARD_FILE, mode='a', index=False, header=False)

# def load_leaderboard():
#     """
#     Load all submissions from the leaderboard file.
#     """
#     if not os.path.exists(LEADERBOARD_FILE) or os.stat(LEADERBOARD_FILE).st_size == 0:
#         return pd.DataFrame({
#             "Model Name": [],
#             "Overall Accuracy": [],
#             "Valid Accuracy": [],
#             "Correct Predictions": [],
#             "Total Questions": [],
#             "Timestamp": [],
#         })
#     return pd.read_csv(LEADERBOARD_FILE)

# def evaluate_predictions(prediction_file, model_name, add_to_leaderboard):
#     """
#     Evaluate predictions and optionally add results to the leaderboard.
#     """
#     ground_truth_file = "ground_truth.csv"
#     if not os.path.exists(ground_truth_file):
#         return "Ground truth file not found.", load_leaderboard()
#     if not prediction_file:
#         return "Prediction file not uploaded.", load_leaderboard()

#     try:
#         # Load predictions and ground truth
#         predictions_df = pd.read_csv(prediction_file.name)
#         ground_truth_df = pd.read_csv(ground_truth_file)

#         # Merge predictions with ground truth
#         merged_df = pd.merge(predictions_df, ground_truth_df, on='question_id', how='inner')
#         merged_df['pred_answer'] = merged_df['predicted_answer'].apply(clean_answer)

#         # Evaluate predictions
#         valid_predictions = merged_df.dropna(subset=['pred_answer'])
#         correct_predictions = (valid_predictions['pred_answer'] == valid_predictions['Answer']).sum()
#         total_predictions = len(merged_df)
#         total_valid_predictions = len(valid_predictions)

#         # Calculate accuracy
#         overall_accuracy = correct_predictions / total_predictions if total_predictions > 0 else 0
#         valid_accuracy = correct_predictions / total_valid_predictions if total_valid_predictions > 0 else 0

#         results = {
#             'model_name': model_name if model_name else "Unknown Model",
#             'overall_accuracy': overall_accuracy,
#             'valid_accuracy': valid_accuracy,
#             'correct_predictions': correct_predictions,
#             'total_questions': total_predictions,
#         }

#         # Update leaderboard only if opted in
#         if add_to_leaderboard:
#             update_leaderboard(results)
#             return "Evaluation completed and added to leaderboard.", load_leaderboard()
#         else:
#             return "Evaluation completed but not added to leaderboard.", load_leaderboard()
#     except Exception as e:
#         return f"Error during evaluation: {str(e)}", load_leaderboard()

# # Initialize leaderboard file
# initialize_leaderboard_file()

# # Gradio Interface
# with gr.Blocks() as demo:
#     gr.Markdown("# Prediction Evaluation Tool with Leaderboard")
    
#     with gr.Tabs():
#         # Submission Tab
#         with gr.TabItem("πŸ… Submission"):
#             file_input = gr.File(label="Upload Prediction CSV")
#             model_name_input = gr.Textbox(label="Model Name", placeholder="Enter your model name")
#             add_to_leaderboard_checkbox = gr.Checkbox(label="Add to Leaderboard?", value=True)
#             eval_status = gr.Textbox(label="Evaluation Status", interactive=False)
#             leaderboard_table_preview = gr.Dataframe(
#                 value=load_leaderboard(),
#                 label="Leaderboard (Preview)",
#                 interactive=False,
#                 wrap=True,
#             )
#             eval_button = gr.Button("Evaluate and Update Leaderboard")
#             eval_button.click(
#                 evaluate_predictions,
#                 inputs=[file_input, model_name_input, add_to_leaderboard_checkbox],
#                 outputs=[eval_status, leaderboard_table_preview],
#             )
        
#         # Leaderboard Tab
#         with gr.TabItem("πŸ… Leaderboard"):
#             leaderboard_table = gr.Dataframe(
#                 value=load_leaderboard(),
#                 label="Leaderboard",
#                 interactive=False,
#                 wrap=True,
#             )
#             refresh_button = gr.Button("Refresh Leaderboard")
#             refresh_button.click(
#                 lambda: load_leaderboard(),
#                 inputs=[],
#                 outputs=[leaderboard_table],
#             )

#     gr.Markdown(f"Last updated on **{LAST_UPDATED}**")

# demo.launch()


import gradio as gr
import pandas as pd
import os
import re
from datetime import datetime
from huggingface_hub import hf_hub_download
from huggingface_hub import HfApi, HfFolder

LEADERBOARD_FILE = "leaderboard.csv"
GROUND_TRUTH_FILE = "ground_truth.csv"
LAST_UPDATED = datetime.now().strftime("%B %d, %Y")

# Ensure authentication and suppress warnings
os.environ["HF_HUB_DISABLE_SYMLINKS_WARNING"] = "1"
HF_TOKEN = os.getenv("HF_TOKEN")
if not HF_TOKEN:
    raise ValueError("HF_TOKEN environment variable is not set or invalid.")

def initialize_leaderboard_file():
    """
    Ensure the leaderboard file exists and has the correct headers.
    """
    if not os.path.exists(LEADERBOARD_FILE):
        pd.DataFrame(columns=[
            "Model Name", "Overall Accuracy", "Valid Accuracy",
            "Correct Predictions", "Total Questions", "Timestamp"
        ]).to_csv(LEADERBOARD_FILE, index=False)
    elif os.stat(LEADERBOARD_FILE).st_size == 0:
        pd.DataFrame(columns=[
            "Model Name", "Overall Accuracy", "Valid Accuracy",
            "Correct Predictions", "Total Questions", "Timestamp"
        ]).to_csv(LEADERBOARD_FILE, index=False)

def clean_answer(answer):
    if pd.isna(answer):
        return None
    answer = str(answer)
    clean = re.sub(r'[^A-Da-d]', '', answer)
    return clean[0].upper() if clean else None


def update_leaderboard(results):
    """
    Append new submission results to the leaderboard file and push updates to the Hugging Face repository.
    """
    new_entry = {
        "Model Name": results['model_name'],
        "Overall Accuracy": round(results['overall_accuracy'] * 100, 2),
        "Valid Accuracy": round(results['valid_accuracy'] * 100, 2),
        "Correct Predictions": results['correct_predictions'],
        "Total Questions": results['total_questions'],
        "Timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
    }

    try:
        # Update the local leaderboard file
        new_entry_df = pd.DataFrame([new_entry])
        file_exists = os.path.exists(LEADERBOARD_FILE)
        
        new_entry_df.to_csv(
            LEADERBOARD_FILE,
            mode='a',  # Append mode
            index=False,
            header=not file_exists  # Write header only if the file is new
        )
        print(f"Leaderboard updated successfully at {LEADERBOARD_FILE}")

        # Push the updated file to the Hugging Face repository using HTTP API
        api = HfApi()
        token = HfFolder.get_token()
        
        api.upload_file(
            path_or_fileobj=LEADERBOARD_FILE,
            path_in_repo="leaderboard.csv",
            repo_id="SondosMB/ss",  # Your Space repository
            repo_type="space",
            token=token
        )
        print("Leaderboard changes pushed to Hugging Face repository.")
        
    except Exception as e:
        print(f"Error updating leaderboard file: {e}")



def load_leaderboard():
    if not os.path.exists(LEADERBOARD_FILE) or os.stat(LEADERBOARD_FILE).st_size == 0:
        return pd.DataFrame({
            "Model Name": [],
            "Overall Accuracy": [],
            "Valid Accuracy": [],
            "Correct Predictions": [],
            "Total Questions": [],
            "Timestamp": [],
        })
    return pd.read_csv(LEADERBOARD_FILE)

def evaluate_predictions(prediction_file, model_name, add_to_leaderboard):
    try:
        ground_truth_path = hf_hub_download(
            repo_id="SondosMB/ground-truth-dataset",
            filename="ground_truth.csv",
            repo_type="dataset",
            use_auth_token=True
        )
        ground_truth_df = pd.read_csv(ground_truth_path)
    except FileNotFoundError:
        return "Ground truth file not found in the dataset repository.", load_leaderboard()
    except Exception as e:
        return f"Error loading ground truth: {e}", load_leaderboard()

    if not prediction_file:
        return "Prediction file not uploaded.", load_leaderboard()

    try:
        predictions_df = pd.read_csv(prediction_file.name)
        merged_df = pd.merge(predictions_df, ground_truth_df, on='question_id', how='inner')
        merged_df['pred_answer'] = merged_df['predicted_answer'].apply(clean_answer)

        valid_predictions = merged_df.dropna(subset=['pred_answer'])
        correct_predictions = (valid_predictions['pred_answer'] == valid_predictions['Answer']).sum()
        total_predictions = len(merged_df)
        total_valid_predictions = len(valid_predictions)

        overall_accuracy = correct_predictions / total_predictions if total_predictions > 0 else 0
        valid_accuracy = correct_predictions / total_valid_predictions if total_valid_predictions > 0 else 0

        results = {
            'model_name': model_name if model_name else "Unknown Model",
            'overall_accuracy': overall_accuracy,
            'valid_accuracy': valid_accuracy,
            'correct_predictions': correct_predictions,
            'total_questions': total_predictions,
        }

        if add_to_leaderboard:
            update_leaderboard(results)
            return "Evaluation completed and added to leaderboard.", load_leaderboard()
        else:
            return "Evaluation completed but not added to leaderboard.", load_leaderboard()
  
    except Exception as e:
        return f"Error during evaluation: {str(e)}", load_leaderboard()

initialize_leaderboard_file()

with gr.Blocks() as demo:
    gr.Markdown("""
        # Competition Title
        ### Welcome to the Competition Overview
        ![Competition Logo](![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/644c4c848c51ddbe0ea841db/mDW2bak1sPUbOafx2FELE.jpeg)

)  
        Here you can submit your predictions, view the leaderboard, and track your performance!
    """)

    with gr.Tabs():
        with gr.TabItem("πŸ“– Overview"):
            gr.Markdown("""
## Overview
# Welcome to the Mobile-MMLU Benchmark Competition

Evaluate the performance of mobile-compatible Large Language Models (LLMs) on 16,186 scenario-based and factual questions across 80 fields. Compete to showcase your model’s accuracy for real-world mobile scenarios.

## What is Mobile-MMLU?

Mobile-MMLU is a benchmark designed to test the capabilities of LLMs optimized for mobile use. By participating in this competition, you contribute to advancing mobile intelligence benchmarks and shaping the future of mobile-compatible AI systems.

---

## How It Works

1. **Download the Dataset**  
   Access the dataset and detailed generation instructions on our [GitHub page](https://github.com/your-github-repo).

2. **Generate Predictions**  
   Use your LLM to answer the questions and format your predictions as a CSV file with the following structure as written on our GitHub page :
	 
3. **Submit Predictions**  
Upload your predictions via the submission portal.

4. **Evaluation**  
Your submission will be scored on accuracy 

5. **Leaderboard**  
Compare your results against other participants on the live leaderboard.

---

## Competition Tasks

Participants are tasked with generating predictions for the dataset and optimizing their models for:
- **Accuracy**: Correctly answering questions across diverse fields.
---


## Get Started

1. **Prepare Your Model**  
Refer to our [GitHub page](https://github.com/your-github-repo) for dataset access and response generation instructions.

2. **Submit Predictions**  
Format your submission as specified in the rules.

3. **Track Progress**  
Check the leaderboard for real-time rankings.

---

## Contact Us

For questions or support, contact us at: [Insert Email Address]
                """)

        with gr.TabItem("πŸ“€ Submission"):
            with gr.Row():
                file_input = gr.File(label="Upload Prediction CSV", file_types=[".csv"], interactive=True)
                model_name_input = gr.Textbox(label="Model Name", placeholder="Enter your model name")

            with gr.Row():
                overall_accuracy_display = gr.Number(label="Overall Accuracy", interactive=False)
                add_to_leaderboard_checkbox = gr.Checkbox(label="Add to Leaderboard?", value=True)

            eval_button = gr.Button("Evaluate")
            eval_status = gr.Textbox(label="Evaluation Status", interactive=False)

            def handle_evaluation(file, model_name, add_to_leaderboard):
                status, leaderboard = evaluate_predictions(file, model_name, add_to_leaderboard)
                if leaderboard.empty:
                    overall_accuracy = 0
                else:
                    overall_accuracy = leaderboard.iloc[-1]["Overall Accuracy"]
                return status, overall_accuracy

            eval_button.click(
                handle_evaluation,
                inputs=[file_input, model_name_input, add_to_leaderboard_checkbox],
                outputs=[eval_status, overall_accuracy_display],
            )

        with gr.TabItem("πŸ… Leaderboard"):
            leaderboard_table = gr.Dataframe(
                value=load_leaderboard(),
                label="Leaderboard",
                interactive=False,
                wrap=True,
            )
            refresh_button = gr.Button("Refresh Leaderboard")
            refresh_button.click(
                lambda: load_leaderboard(),
                inputs=[],
                outputs=[leaderboard_table],
            )

    gr.Markdown(f"Last updated on **{LAST_UPDATED}**")

demo.launch()