Spaces:
Sleeping
Sleeping
File size: 16,031 Bytes
9ba8fab 3769468 9ba8fab 3769468 6960dc6 da12542 dbe4d6a da12542 dbe4d6a da12542 e445644 f23d956 dbe4d6a f23d956 dbe4d6a f23d956 9ba8fab e445644 9ba8fab e445644 14aa913 6e99c6f 14aa913 dbe4d6a ddc83ff 5f3b2ed e445644 5f3b2ed e8b48ca 5f3b2ed dbe4d6a 3769468 1c9f0b6 3769468 d415750 3769468 f81f1e2 3769468 d4aa692 f81f1e2 d415750 3769468 d415750 3769468 d415750 3769468 d415750 d4aa692 f81f1e2 3769468 ddc83ff 2e23fb2 f81f1e2 d4aa692 3769468 d415750 f81f1e2 3769468 dbe4d6a e8b48ca d415750 d4aa692 d415750 d4aa692 f81f1e2 e445644 d4aa692 f81f1e2 d4aa692 9ba8fab 32130a5 1c9f0b6 dbe4d6a 1c9f0b6 5815dce e445644 1c9f0b6 e445644 1c9f0b6 5815dce 1c9f0b6 e445644 32130a5 1c9f0b6 5815dce 5f3b2ed f23d956 9ba8fab f23d956 e8b48ca f23d956 5815dce f23d956 5815dce f23d956 5815dce 1c9f0b6 5815dce dbe4d6a 1c9f0b6 2e23fb2 f23d956 dbe4d6a f23d956 9ba8fab d415750 3769468 d4aa692 d415750 29c8f24 d4aa692 d415750 9ba8fab d415750 d4aa692 ddc83ff 3769468 d415750 3769468 d4aa692 d415750 3769468 d4aa692 f81f1e2 d415750 f81f1e2 d415750 dbe4d6a d4aa692 d415750 d4aa692 9ba8fab e445644 9ba8fab 5f3b2ed dbe4d6a 9ba8fab dbe4d6a 5f3b2ed 1c9f0b6 5815dce 32130a5 3769468 9ba8fab d4aa692 c726970 dbe4d6a 05a3a7b 9ba8fab 1c9f0b6 f81f1e2 dbe4d6a 9ba8fab d415750 dbe4d6a e445644 dbe4d6a 33f8987 dbe4d6a e445644 dbe4d6a 5f3b2ed 33f8987 dbe4d6a 33f8987 5f3b2ed 33f8987 dbe4d6a d4aa692 33f8987 dbe4d6a 33f8987 dbe4d6a 05a3a7b dbe4d6a 05a3a7b dbe4d6a 05a3a7b dbe4d6a 05a3a7b 33f8987 dbe4d6a 33f8987 dbe4d6a 33f8987 f23d956 33f8987 dbe4d6a e445644 dbe4d6a e445644 dbe4d6a e445644 dbe4d6a 9ba8fab 3769468 1c9f0b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 |
import gradio as gr
import pandas as pd
from datasets import load_dataset
from jiwer import wer, cer
import os
from datetime import datetime
import re
from huggingface_hub import login
# Login to Hugging Face Hub (if token is available)
token = os.environ.get("HG_TOKEN")
if token:
login(token)
try:
dataset = load_dataset("sudoping01/bambara-speech-recognition-benchmark", name="default")["eval"]
references = {row["id"]: row["text"] for row in dataset}
print(f"Loaded {len(references)} reference transcriptions")
except Exception as e:
print(f"Error loading dataset: {str(e)}")
references = {}
leaderboard_file = "leaderboard.csv"
if not os.path.exists(leaderboard_file):
sample_data = [
["test_1", 0.2264, 0.1094, 0.1922, "2025-03-15 10:30:45"],
["test_2", 0.3264, 0.1094, 0.1922, "2025-03-15 10:30:45"],
]
pd.DataFrame(sample_data,
columns=["Model_Name", "WER", "CER", "Combined_Score", "timestamp"]).to_csv(leaderboard_file, index=False)
print(f"Created new leaderboard file with sample data")
else:
leaderboard_df = pd.read_csv(leaderboard_file)
if "Combined_Score" not in leaderboard_df.columns:
leaderboard_df["Combined_Score"] = leaderboard_df["WER"] * 0.7 + leaderboard_df["CER"] * 0.3
leaderboard_df.to_csv(leaderboard_file, index=False)
print(f"Added Combined_Score column to existing leaderboard")
print(f"Loaded leaderboard with {len(leaderboard_df)} entries")
def normalize_text(text):
"""Normalize text for WER/CER calculation"""
if not isinstance(text, str):
text = str(text)
text = text.lower()
text = re.sub(r'[^\w\s]', '', text)
text = re.sub(r'\s+', ' ', text).strip()
return text
def calculate_metrics(predictions_df):
"""Calculate WER and CER for predictions."""
results = []
total_ref_words = 0
total_ref_chars = 0
for _, row in predictions_df.iterrows():
id_val = row["id"]
if id_val not in references:
continue
reference = normalize_text(references[id_val])
hypothesis = normalize_text(row["text"])
if not reference or not hypothesis:
continue
reference_words = reference.split()
hypothesis_words = hypothesis.split()
reference_chars = list(reference)
try:
sample_wer = wer(reference, hypothesis)
sample_cer = cer(reference, hypothesis)
sample_wer = min(sample_wer, 2.0)
sample_cer = min(sample_cer, 2.0)
total_ref_words += len(reference_words)
total_ref_chars += len(reference_chars)
results.append({
"id": id_val,
"reference": reference,
"hypothesis": hypothesis,
"ref_word_count": len(reference_words),
"ref_char_count": len(reference_chars),
"wer": sample_wer,
"cer": sample_cer
})
except Exception as e:
print(f"Error processing sample {id_val}: {str(e)}")
pass
if not results:
raise ValueError("No valid samples for WER/CER calculation")
avg_wer = sum(item["wer"] for item in results) / len(results)
avg_cer = sum(item["cer"] for item in results) / len(results)
weighted_wer = sum(item["wer"] * item["ref_word_count"] for item in results) / total_ref_words
weighted_cer = sum(item["cer"] * item["ref_char_count"] for item in results) / total_ref_chars
return avg_wer, avg_cer, weighted_wer, weighted_cer, results
def format_as_percentage(value):
"""Convert decimal to percentage with 2 decimal places"""
return f"{value * 100:.2f}%"
def prepare_leaderboard_for_display(df, sort_by="Combined_Score"):
"""Format leaderboard for display with ranking and percentages"""
if df is None or len(df) == 0:
return pd.DataFrame(columns=["Rank", "Model_Name", "WER (%)", "CER (%)", "Combined_Score (%)", "timestamp"])
display_df = df.copy()
display_df = display_df.sort_values(sort_by)
display_df.insert(0, "Rank", range(1, len(display_df) + 1))
for col in ["WER", "CER", "Combined_Score"]:
if col in display_df.columns:
display_df[f"{col} (%)"] = display_df[col].apply(lambda x: f"{x * 100:.2f}")
return display_df
def update_ranking(method):
"""Update leaderboard ranking based on selected method"""
try:
current_lb = pd.read_csv(leaderboard_file)
if "Combined_Score" not in current_lb.columns:
current_lb["Combined_Score"] = current_lb["WER"] * 0.7 + current_lb["CER"] * 0.3
sort_column = "Combined_Score"
if method == "WER Only":
sort_column = "WER"
elif method == "CER Only":
sort_column = "CER"
return prepare_leaderboard_for_display(current_lb, sort_column)
except Exception as e:
print(f"Error updating ranking: {str(e)}")
return pd.DataFrame(columns=["Rank", "Model_Name", "WER (%)", "CER (%)", "Combined_Score (%)", "timestamp"])
def process_submission(model_name, csv_file):
"""Process a new model submission"""
if not model_name or not model_name.strip():
return "Error: Please provide a model name.", None
if not csv_file:
return "Error: Please upload a CSV file.", None
try:
df = pd.read_csv(csv_file)
if len(df) == 0:
return "Error: Uploaded CSV is empty.", None
if set(df.columns) != {"id", "text"}:
return f"Error: CSV must contain exactly 'id' and 'text' columns. Found: {', '.join(df.columns)}", None
if df["id"].duplicated().any():
dup_ids = df[df["id"].duplicated()]["id"].unique()
return f"Error: Duplicate IDs found: {', '.join(map(str, dup_ids[:5]))}", None
missing_ids = set(references.keys()) - set(df["id"])
extra_ids = set(df["id"]) - set(references.keys())
if missing_ids:
return f"Error: Missing {len(missing_ids)} IDs in submission. First few missing: {', '.join(map(str, list(missing_ids)[:5]))}", None
if extra_ids:
return f"Error: Found {len(extra_ids)} extra IDs not in reference dataset. First few extra: {', '.join(map(str, list(extra_ids)[:5]))}", None
try:
avg_wer, avg_cer, weighted_wer, weighted_cer, detailed_results = calculate_metrics(df)
# Check for suspiciously low values
if avg_wer < 0.001:
return "Error: WER calculation yielded suspicious results (near-zero). Please check your submission CSV.", None
except Exception as e:
return f"Error calculating metrics: {str(e)}", None
leaderboard = pd.read_csv(leaderboard_file)
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
combined_score = avg_wer * 0.7 + avg_cer * 0.3
if model_name in leaderboard["Model_Name"].values:
idx = leaderboard[leaderboard["Model_Name"] == model_name].index
leaderboard.loc[idx, "WER"] = avg_wer
leaderboard.loc[idx, "CER"] = avg_cer
leaderboard.loc[idx, "Combined_Score"] = combined_score
leaderboard.loc[idx, "timestamp"] = timestamp
updated_leaderboard = leaderboard
else:
new_entry = pd.DataFrame(
[[model_name, avg_wer, avg_cer, combined_score, timestamp]],
columns=["Model_Name", "WER", "CER", "Combined_Score", "timestamp"]
)
updated_leaderboard = pd.concat([leaderboard, new_entry])
updated_leaderboard = updated_leaderboard.sort_values("Combined_Score")
updated_leaderboard.to_csv(leaderboard_file, index=False)
display_leaderboard = prepare_leaderboard_for_display(updated_leaderboard)
return f"Submission processed successfully! WER: {format_as_percentage(avg_wer)}, CER: {format_as_percentage(avg_cer)}, Combined Score: {format_as_percentage(combined_score)}", display_leaderboard
except Exception as e:
return f"Error processing submission: {str(e)}", None
def get_current_leaderboard():
"""Get the current leaderboard data for display"""
try:
if os.path.exists(leaderboard_file):
current_leaderboard = pd.read_csv(leaderboard_file)
if "Combined_Score" not in current_leaderboard.columns:
current_leaderboard["Combined_Score"] = current_leaderboard["WER"] * 0.7 + current_leaderboard["CER"] * 0.3
current_leaderboard.to_csv(leaderboard_file, index=False)
return current_leaderboard
else:
return pd.DataFrame(columns=["Model_Name", "WER", "CER", "Combined_Score", "timestamp"])
except Exception as e:
print(f"Error getting leaderboard: {str(e)}")
return pd.DataFrame(columns=["Model_Name", "WER", "CER", "Combined_Score", "timestamp"])
def create_leaderboard_table():
"""Create and format the leaderboard table for display"""
leaderboard_data = get_current_leaderboard()
return prepare_leaderboard_for_display(leaderboard_data)
with gr.Blocks(title="Bambara ASR Leaderboard") as demo:
gr.Markdown(
"""
# π²π± Bambara ASR Leaderboard
This leaderboard tracks and evaluates speech recognition models for the Bambara language.
Models are ranked based on Word Error Rate (WER), Character Error Rate (CER), and a combined score.
## Current Models Performance
"""
)
current_data = get_current_leaderboard()
if len(current_data) > 0:
best_model = current_data.sort_values("Combined_Score").iloc[0]
gr.Markdown(f"""
### π Current Best Model: **{best_model['Model_Name']}**
* WER: **{best_model['WER']*100:.2f}%**
* CER: **{best_model['CER']*100:.2f}%**
* Combined Score: **{best_model['Combined_Score']*100:.2f}%**
""")
with gr.Tabs() as tabs:
with gr.TabItem("π
Model Rankings"):
initial_leaderboard = create_leaderboard_table()
ranking_method = gr.Radio(
["Combined Score (WER 70%, CER 30%)", "WER Only", "CER Only"],
label="Ranking Method",
value="Combined Score (WER 70%, CER 30%)"
)
leaderboard_view = gr.DataFrame(
value=initial_leaderboard,
interactive=False,
label="Models are ranked by selected metric - lower is better"
)
ranking_method.change(
fn=update_ranking,
inputs=[ranking_method],
outputs=[leaderboard_view]
)
with gr.Accordion("Metrics Explanation", open=False):
gr.Markdown(
"""
## Understanding ASR Metrics
### Word Error Rate (WER)
WER measures how accurately the ASR system recognizes whole words:
* Lower values indicate better performance
* Calculated as: (Substitutions + Insertions + Deletions) / Total Words
* A WER of 0% means perfect transcription
* A WER of 20% means approximately 1 in 5 words contains an error
### Character Error Rate (CER)
CER measures accuracy at the character level:
* More fine-grained than WER
* Better at capturing partial word matches
* Particularly useful for agglutinative languages like Bambara
### Combined Score
* Weighted average: 70% WER + 30% CER
* Provides a balanced evaluation of model performance
* Used as the primary ranking metric
"""
)
with gr.TabItem("π Submit New Results"):
gr.Markdown(
"""
### Submit a new model for evaluation
Upload a CSV file with the following format:
* Must contain exactly two columns: 'id' and 'text'
* The 'id' column should match the reference dataset IDs
* The 'text' column should contain your model's transcriptions
"""
)
with gr.Row():
model_name_input = gr.Textbox(
label="Model Name",
placeholder="e.g., MALIBA-AI/bambara-asr"
)
gr.Markdown("*Use a descriptive name to identify your model*")
with gr.Row():
csv_upload = gr.File(
label="Upload CSV File",
file_types=[".csv"]
)
gr.Markdown("*CSV with columns: id, text*")
submit_btn = gr.Button("Submit", variant="primary")
output_msg = gr.Textbox(label="Status", interactive=False)
leaderboard_display = gr.DataFrame(
label="Updated Leaderboard",
value=initial_leaderboard,
interactive=False
)
submit_btn.click(
fn=process_submission,
inputs=[model_name_input, csv_upload],
outputs=[output_msg, leaderboard_display]
)
with gr.TabItem("π Benchmark Dataset"):
gr.Markdown(
"""
## About the Benchmark Dataset
This leaderboard uses the **[sudoping01/bambara-speech-recognition-benchmark](https://huggingface.co/datasets/MALIBA-AI/bambara-speech-recognition-leaderboard)** dataset:
* Contains diverse Bambara speech samples
* Includes various speakers, accents, and dialects
* Covers different speech styles and recording conditions
* Transcribed and validated
### How to Generate Predictions
To submit results to this leaderboard:
1. Download the audio files from the benchmark dataset
2. Run your ASR model on the audio files
3. Generate a CSV file with 'id' and 'text' columns
4. Submit your results using the form in the "Submit New Results" tab
### Evaluation Guidelines
* Text is normalized (lowercase, punctuation removed) before metrics calculation
* Extreme outliers are capped to prevent skewing results
* All submissions are validated for format and completeness
NB: This work is a collaboration between MALIBA-AI, RobotsMali AI4D-LAB and Djelia
"""
)
gr.Markdown(
"""
---
### About MALIBA-AI
**MALIBA-AI: Empowering Mali's Future Through Community-Driven AI Innovation**
*"No Malian Language Left Behind"*
This leaderboard is maintained by the MALIBA-AI initiative to track progress in Bambara speech recognition technology.
For more information, visit [MALIBA-AI on Hugging Face](https://huggingface.co/MALIBA-AI).
"""
)
if __name__ == "__main__":
demo.launch() |