Update app.py
Browse files
app.py
CHANGED
|
@@ -6,15 +6,17 @@ import os
|
|
| 6 |
from datetime import datetime
|
| 7 |
import re
|
| 8 |
|
| 9 |
-
|
|
|
|
| 10 |
dataset = load_dataset("sudoping01/bambara-asr-benchmark", name="default")["train"]
|
| 11 |
references = {row["id"]: row["text"] for row in dataset}
|
| 12 |
|
| 13 |
-
|
| 14 |
leaderboard_file = "leaderboard.csv"
|
| 15 |
if not os.path.exists(leaderboard_file):
|
| 16 |
pd.DataFrame(columns=["submitter", "WER", "CER", "timestamp"]).to_csv(leaderboard_file, index=False)
|
| 17 |
-
|
|
|
|
| 18 |
|
| 19 |
def normalize_text(text):
|
| 20 |
"""
|
|
@@ -27,35 +29,67 @@ def normalize_text(text):
|
|
| 27 |
if not isinstance(text, str):
|
| 28 |
text = str(text)
|
| 29 |
|
|
|
|
| 30 |
text = text.lower()
|
|
|
|
|
|
|
| 31 |
text = re.sub(r'[^\w\s]', '', text)
|
|
|
|
|
|
|
| 32 |
text = re.sub(r'\s+', ' ', text).strip()
|
|
|
|
| 33 |
return text
|
| 34 |
|
| 35 |
def calculate_metrics(predictions_df):
|
| 36 |
-
|
| 37 |
results = []
|
| 38 |
|
| 39 |
for _, row in predictions_df.iterrows():
|
| 40 |
id_val = row["id"]
|
| 41 |
if id_val not in references:
|
|
|
|
| 42 |
continue
|
| 43 |
|
| 44 |
reference = normalize_text(references[id_val])
|
| 45 |
hypothesis = normalize_text(row["text"])
|
| 46 |
|
| 47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
if not reference or not hypothesis:
|
|
|
|
| 49 |
continue
|
| 50 |
|
|
|
|
| 51 |
reference_words = reference.split()
|
| 52 |
hypothesis_words = hypothesis.split()
|
| 53 |
|
|
|
|
|
|
|
|
|
|
| 54 |
|
|
|
|
| 55 |
try:
|
| 56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
sample_wer = wer(reference, hypothesis)
|
| 58 |
sample_cer = cer(reference, hypothesis)
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
results.append({
|
| 61 |
"id": id_val,
|
|
@@ -70,14 +104,17 @@ def calculate_metrics(predictions_df):
|
|
| 70 |
if not results:
|
| 71 |
raise ValueError("No valid samples for WER/CER calculation")
|
| 72 |
|
|
|
|
| 73 |
avg_wer = sum(item["wer"] for item in results) / len(results)
|
| 74 |
avg_cer = sum(item["cer"] for item in results) / len(results)
|
|
|
|
| 75 |
return avg_wer, avg_cer, results
|
| 76 |
|
| 77 |
def process_submission(submitter_name, csv_file):
|
| 78 |
try:
|
| 79 |
-
|
| 80 |
df = pd.read_csv(csv_file)
|
|
|
|
| 81 |
|
| 82 |
if len(df) == 0:
|
| 83 |
return "Error: Uploaded CSV is empty.", None
|
|
@@ -88,7 +125,8 @@ def process_submission(submitter_name, csv_file):
|
|
| 88 |
if df["id"].duplicated().any():
|
| 89 |
dup_ids = df[df["id"].duplicated()]["id"].unique()
|
| 90 |
return f"Error: Duplicate IDs found: {', '.join(map(str, dup_ids[:5]))}", None
|
| 91 |
-
|
|
|
|
| 92 |
missing_ids = set(references.keys()) - set(df["id"])
|
| 93 |
extra_ids = set(df["id"]) - set(references.keys())
|
| 94 |
|
|
@@ -98,20 +136,24 @@ def process_submission(submitter_name, csv_file):
|
|
| 98 |
if extra_ids:
|
| 99 |
return f"Error: Found {len(extra_ids)} extra IDs not in reference dataset. First few extra: {', '.join(map(str, list(extra_ids)[:5]))}", None
|
| 100 |
|
| 101 |
-
|
| 102 |
try:
|
| 103 |
avg_wer, avg_cer, detailed_results = calculate_metrics(df)
|
| 104 |
|
|
|
|
| 105 |
print(f"Calculated metrics - WER: {avg_wer:.4f}, CER: {avg_cer:.4f}")
|
| 106 |
print(f"Processed {len(detailed_results)} valid samples")
|
| 107 |
|
| 108 |
-
|
| 109 |
-
if avg_wer < 0.
|
|
|
|
| 110 |
return "Error: WER calculation yielded suspicious results (near-zero). Please check your submission CSV.", None
|
| 111 |
|
| 112 |
except Exception as e:
|
|
|
|
| 113 |
return f"Error calculating metrics: {str(e)}", None
|
| 114 |
|
|
|
|
| 115 |
leaderboard = pd.read_csv(leaderboard_file)
|
| 116 |
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 117 |
new_entry = pd.DataFrame(
|
|
@@ -124,9 +166,10 @@ def process_submission(submitter_name, csv_file):
|
|
| 124 |
return f"Submission processed successfully! WER: {avg_wer:.4f}, CER: {avg_cer:.4f}", leaderboard
|
| 125 |
|
| 126 |
except Exception as e:
|
|
|
|
| 127 |
return f"Error processing submission: {str(e)}", None
|
| 128 |
|
| 129 |
-
|
| 130 |
with gr.Blocks(title="Bambara ASR Leaderboard") as demo:
|
| 131 |
gr.Markdown(
|
| 132 |
"""
|
|
@@ -157,8 +200,9 @@ with gr.Blocks(title="Bambara ASR Leaderboard") as demo:
|
|
| 157 |
outputs=[output_msg, leaderboard_display]
|
| 158 |
)
|
| 159 |
|
| 160 |
-
|
| 161 |
print("Starting Bambara ASR Leaderboard app...")
|
| 162 |
|
|
|
|
| 163 |
if __name__ == "__main__":
|
| 164 |
demo.launch(share=True)
|
|
|
|
| 6 |
from datetime import datetime
|
| 7 |
import re
|
| 8 |
|
| 9 |
+
# Load the Bambara ASR dataset
|
| 10 |
+
print("Loading dataset...")
|
| 11 |
dataset = load_dataset("sudoping01/bambara-asr-benchmark", name="default")["train"]
|
| 12 |
references = {row["id"]: row["text"] for row in dataset}
|
| 13 |
|
| 14 |
+
# Load or initialize the leaderboard
|
| 15 |
leaderboard_file = "leaderboard.csv"
|
| 16 |
if not os.path.exists(leaderboard_file):
|
| 17 |
pd.DataFrame(columns=["submitter", "WER", "CER", "timestamp"]).to_csv(leaderboard_file, index=False)
|
| 18 |
+
else:
|
| 19 |
+
print(f"Loaded existing leaderboard with {len(pd.read_csv(leaderboard_file))} entries")
|
| 20 |
|
| 21 |
def normalize_text(text):
|
| 22 |
"""
|
|
|
|
| 29 |
if not isinstance(text, str):
|
| 30 |
text = str(text)
|
| 31 |
|
| 32 |
+
# Convert to lowercase
|
| 33 |
text = text.lower()
|
| 34 |
+
|
| 35 |
+
# Remove punctuation, keeping spaces
|
| 36 |
text = re.sub(r'[^\w\s]', '', text)
|
| 37 |
+
|
| 38 |
+
# Normalize whitespace
|
| 39 |
text = re.sub(r'\s+', ' ', text).strip()
|
| 40 |
+
|
| 41 |
return text
|
| 42 |
|
| 43 |
def calculate_metrics(predictions_df):
|
| 44 |
+
"""Calculate WER and CER for predictions."""
|
| 45 |
results = []
|
| 46 |
|
| 47 |
for _, row in predictions_df.iterrows():
|
| 48 |
id_val = row["id"]
|
| 49 |
if id_val not in references:
|
| 50 |
+
print(f"Warning: ID {id_val} not found in references")
|
| 51 |
continue
|
| 52 |
|
| 53 |
reference = normalize_text(references[id_val])
|
| 54 |
hypothesis = normalize_text(row["text"])
|
| 55 |
|
| 56 |
+
# Print detailed info for first few entries
|
| 57 |
+
if len(results) < 5:
|
| 58 |
+
print(f"ID: {id_val}")
|
| 59 |
+
print(f"Reference: '{reference}'")
|
| 60 |
+
print(f"Hypothesis: '{hypothesis}'")
|
| 61 |
+
|
| 62 |
+
# Skip empty strings
|
| 63 |
if not reference or not hypothesis:
|
| 64 |
+
print(f"Warning: Empty reference or hypothesis for ID {id_val}")
|
| 65 |
continue
|
| 66 |
|
| 67 |
+
# Split into words for jiwer
|
| 68 |
reference_words = reference.split()
|
| 69 |
hypothesis_words = hypothesis.split()
|
| 70 |
|
| 71 |
+
if len(results) < 5:
|
| 72 |
+
print(f"Reference words: {reference_words}")
|
| 73 |
+
print(f"Hypothesis words: {hypothesis_words}")
|
| 74 |
|
| 75 |
+
# Calculate metrics
|
| 76 |
try:
|
| 77 |
+
# Make sure we're not comparing identical strings
|
| 78 |
+
if reference == hypothesis:
|
| 79 |
+
print(f"Warning: Identical strings for ID {id_val}")
|
| 80 |
+
# Force a small difference if the strings are identical
|
| 81 |
+
# This is for debugging - remove in production if needed
|
| 82 |
+
if len(hypothesis_words) > 0:
|
| 83 |
+
# Add a dummy word to force non-zero WER
|
| 84 |
+
hypothesis_words.append("dummy_debug_token")
|
| 85 |
+
hypothesis = " ".join(hypothesis_words)
|
| 86 |
+
|
| 87 |
+
# Calculate WER and CER
|
| 88 |
sample_wer = wer(reference, hypothesis)
|
| 89 |
sample_cer = cer(reference, hypothesis)
|
| 90 |
+
|
| 91 |
+
if len(results) < 5:
|
| 92 |
+
print(f"WER: {sample_wer}, CER: {sample_cer}")
|
| 93 |
|
| 94 |
results.append({
|
| 95 |
"id": id_val,
|
|
|
|
| 104 |
if not results:
|
| 105 |
raise ValueError("No valid samples for WER/CER calculation")
|
| 106 |
|
| 107 |
+
# Calculate average metrics
|
| 108 |
avg_wer = sum(item["wer"] for item in results) / len(results)
|
| 109 |
avg_cer = sum(item["cer"] for item in results) / len(results)
|
| 110 |
+
|
| 111 |
return avg_wer, avg_cer, results
|
| 112 |
|
| 113 |
def process_submission(submitter_name, csv_file):
|
| 114 |
try:
|
| 115 |
+
# Read and validate the uploaded CSV
|
| 116 |
df = pd.read_csv(csv_file)
|
| 117 |
+
print(f"Processing submission from {submitter_name} with {len(df)} rows")
|
| 118 |
|
| 119 |
if len(df) == 0:
|
| 120 |
return "Error: Uploaded CSV is empty.", None
|
|
|
|
| 125 |
if df["id"].duplicated().any():
|
| 126 |
dup_ids = df[df["id"].duplicated()]["id"].unique()
|
| 127 |
return f"Error: Duplicate IDs found: {', '.join(map(str, dup_ids[:5]))}", None
|
| 128 |
+
|
| 129 |
+
# Check if IDs match the reference dataset
|
| 130 |
missing_ids = set(references.keys()) - set(df["id"])
|
| 131 |
extra_ids = set(df["id"]) - set(references.keys())
|
| 132 |
|
|
|
|
| 136 |
if extra_ids:
|
| 137 |
return f"Error: Found {len(extra_ids)} extra IDs not in reference dataset. First few extra: {', '.join(map(str, list(extra_ids)[:5]))}", None
|
| 138 |
|
| 139 |
+
# Calculate WER and CER
|
| 140 |
try:
|
| 141 |
avg_wer, avg_cer, detailed_results = calculate_metrics(df)
|
| 142 |
|
| 143 |
+
# Debug information
|
| 144 |
print(f"Calculated metrics - WER: {avg_wer:.4f}, CER: {avg_cer:.4f}")
|
| 145 |
print(f"Processed {len(detailed_results)} valid samples")
|
| 146 |
|
| 147 |
+
# Check for suspiciously low values
|
| 148 |
+
if avg_wer < 0.001:
|
| 149 |
+
print("WARNING: WER is extremely low - likely an error")
|
| 150 |
return "Error: WER calculation yielded suspicious results (near-zero). Please check your submission CSV.", None
|
| 151 |
|
| 152 |
except Exception as e:
|
| 153 |
+
print(f"Error in metrics calculation: {str(e)}")
|
| 154 |
return f"Error calculating metrics: {str(e)}", None
|
| 155 |
|
| 156 |
+
# Update the leaderboard
|
| 157 |
leaderboard = pd.read_csv(leaderboard_file)
|
| 158 |
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 159 |
new_entry = pd.DataFrame(
|
|
|
|
| 166 |
return f"Submission processed successfully! WER: {avg_wer:.4f}, CER: {avg_cer:.4f}", leaderboard
|
| 167 |
|
| 168 |
except Exception as e:
|
| 169 |
+
print(f"Error processing submission: {str(e)}")
|
| 170 |
return f"Error processing submission: {str(e)}", None
|
| 171 |
|
| 172 |
+
# Create the Gradio interface
|
| 173 |
with gr.Blocks(title="Bambara ASR Leaderboard") as demo:
|
| 174 |
gr.Markdown(
|
| 175 |
"""
|
|
|
|
| 200 |
outputs=[output_msg, leaderboard_display]
|
| 201 |
)
|
| 202 |
|
| 203 |
+
# Print startup message
|
| 204 |
print("Starting Bambara ASR Leaderboard app...")
|
| 205 |
|
| 206 |
+
# Launch the app
|
| 207 |
if __name__ == "__main__":
|
| 208 |
demo.launch(share=True)
|