Update app.py
Browse files
app.py
CHANGED
|
@@ -8,56 +8,30 @@ import re
|
|
| 8 |
|
| 9 |
from huggingface_hub import login
|
| 10 |
|
| 11 |
-
|
| 12 |
token = os.environ.get("HG_TOKEN")
|
| 13 |
login(token)
|
| 14 |
|
| 15 |
-
print("Loading dataset...")
|
| 16 |
try:
|
| 17 |
dataset = load_dataset("sudoping01/bambara-speech-recognition-benchmark", name="default")["eval"]
|
| 18 |
references = {row["id"]: row["text"] for row in dataset}
|
| 19 |
-
print(f"Successfully loaded dataset with {len(references)} samples")
|
| 20 |
except Exception as e:
|
| 21 |
-
print(f"Error loading dataset: {str(e)}")
|
| 22 |
references = {}
|
| 23 |
-
print("WARNING: Using empty references dictionary due to dataset loading error")
|
| 24 |
|
| 25 |
-
|
| 26 |
leaderboard_file = "leaderboard.csv"
|
| 27 |
if not os.path.exists(leaderboard_file):
|
| 28 |
-
# Create with Model_Name consistently
|
| 29 |
pd.DataFrame(columns=["Model_Name", "WER", "CER", "Combined_Score", "timestamp"]).to_csv(leaderboard_file, index=False)
|
| 30 |
-
print("Created new leaderboard file")
|
| 31 |
-
|
| 32 |
-
# Add example entries for first-time visitors
|
| 33 |
-
example_data = [
|
| 34 |
-
["Example Model 1", 0.35, 0.20, 0.305, "2023-01-01 00:00:00"],
|
| 35 |
-
["Example Model 2", 0.40, 0.18, 0.334, "2023-01-02 00:00:00"],
|
| 36 |
-
["Example Model 3", 0.32, 0.25, 0.299, "2023-01-03 00:00:00"]
|
| 37 |
-
]
|
| 38 |
-
example_df = pd.DataFrame(
|
| 39 |
-
example_data,
|
| 40 |
-
columns=["Model_Name", "WER", "CER", "Combined_Score", "timestamp"]
|
| 41 |
-
)
|
| 42 |
-
example_df.to_csv(leaderboard_file, index=False)
|
| 43 |
-
print("Added example data to empty leaderboard for demonstration")
|
| 44 |
else:
|
| 45 |
-
# Load existing leaderboard
|
| 46 |
leaderboard_df = pd.read_csv(leaderboard_file)
|
| 47 |
|
| 48 |
-
|
| 49 |
-
if "submitter" in leaderboard_df.columns and "Model_Name" not in leaderboard_df.columns:
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
print("Renamed 'submitter' column to 'Model_Name' for consistency")
|
| 53 |
|
| 54 |
-
# Add Combined_Score column if it doesn't exist
|
| 55 |
if "Combined_Score" not in leaderboard_df.columns:
|
| 56 |
-
leaderboard_df["Combined_Score"] = leaderboard_df["WER"] * 0.7 + leaderboard_df["CER"] * 0.3
|
| 57 |
leaderboard_df.to_csv(leaderboard_file, index=False)
|
| 58 |
-
print("Added Combined_Score column to existing leaderboard")
|
| 59 |
-
|
| 60 |
-
print(f"Loaded existing leaderboard with {len(leaderboard_df)} entries")
|
| 61 |
|
| 62 |
def normalize_text(text):
|
| 63 |
"""
|
|
@@ -89,9 +63,7 @@ def calculate_metrics(predictions_df):
|
|
| 89 |
reference = normalize_text(references[id_val])
|
| 90 |
hypothesis = normalize_text(row["text"])
|
| 91 |
|
| 92 |
-
|
| 93 |
if not reference or not hypothesis:
|
| 94 |
-
print(f"Warning: Empty reference or hypothesis for ID {id_val}")
|
| 95 |
continue
|
| 96 |
|
| 97 |
reference_words = reference.split()
|
|
@@ -99,18 +71,15 @@ def calculate_metrics(predictions_df):
|
|
| 99 |
reference_chars = list(reference)
|
| 100 |
|
| 101 |
try:
|
| 102 |
-
|
| 103 |
sample_wer = wer(reference, hypothesis)
|
| 104 |
sample_cer = cer(reference, hypothesis)
|
| 105 |
|
| 106 |
sample_wer = min(sample_wer, 2.0)
|
| 107 |
sample_cer = min(sample_cer, 2.0)
|
| 108 |
|
| 109 |
-
|
| 110 |
total_ref_words += len(reference_words)
|
| 111 |
total_ref_chars += len(reference_chars)
|
| 112 |
|
| 113 |
-
|
| 114 |
results.append({
|
| 115 |
"id": id_val,
|
| 116 |
"reference": reference,
|
|
@@ -120,13 +89,13 @@ def calculate_metrics(predictions_df):
|
|
| 120 |
"wer": sample_wer,
|
| 121 |
"cer": sample_cer
|
| 122 |
})
|
| 123 |
-
except Exception
|
| 124 |
-
|
| 125 |
|
| 126 |
if not results:
|
| 127 |
raise ValueError("No valid samples for WER/CER calculation")
|
| 128 |
|
| 129 |
-
|
| 130 |
avg_wer = sum(item["wer"] for item in results) / len(results)
|
| 131 |
avg_cer = sum(item["cer"] for item in results) / len(results)
|
| 132 |
|
|
@@ -142,7 +111,7 @@ def update_ranking(method):
|
|
| 142 |
current_lb = pd.read_csv(leaderboard_file)
|
| 143 |
|
| 144 |
if "Combined_Score" not in current_lb.columns:
|
| 145 |
-
current_lb["Combined_Score"] = current_lb["WER"] * 0.7 + current_lb["CER"] * 0.3
|
| 146 |
|
| 147 |
if method == "WER Only":
|
| 148 |
return current_lb.sort_values("WER")
|
|
@@ -150,15 +119,12 @@ def update_ranking(method):
|
|
| 150 |
return current_lb.sort_values("CER")
|
| 151 |
else: # Combined Score
|
| 152 |
return current_lb.sort_values("Combined_Score")
|
| 153 |
-
except Exception
|
| 154 |
-
print(f"Error updating ranking: {str(e)}")
|
| 155 |
-
# Return empty dataframe if something goes wrong
|
| 156 |
return pd.DataFrame(columns=["Model_Name", "WER", "CER", "Combined_Score", "timestamp"])
|
| 157 |
|
| 158 |
def process_submission(model_name, csv_file):
|
| 159 |
try:
|
| 160 |
df = pd.read_csv(csv_file)
|
| 161 |
-
print(f"Processing submission from {model_name} with {len(df)} rows")
|
| 162 |
|
| 163 |
if len(df) == 0:
|
| 164 |
return "Error: Uploaded CSV is empty.", None
|
|
@@ -170,7 +136,7 @@ def process_submission(model_name, csv_file):
|
|
| 170 |
dup_ids = df[df["id"].duplicated()]["id"].unique()
|
| 171 |
return f"Error: Duplicate IDs found: {', '.join(map(str, dup_ids[:5]))}", None
|
| 172 |
|
| 173 |
-
|
| 174 |
missing_ids = set(references.keys()) - set(df["id"])
|
| 175 |
extra_ids = set(df["id"]) - set(references.keys())
|
| 176 |
|
|
@@ -180,7 +146,7 @@ def process_submission(model_name, csv_file):
|
|
| 180 |
if extra_ids:
|
| 181 |
return f"Error: Found {len(extra_ids)} extra IDs not in reference dataset. First few extra: {', '.join(map(str, list(extra_ids)[:5]))}", None
|
| 182 |
|
| 183 |
-
|
| 184 |
try:
|
| 185 |
avg_wer, avg_cer, weighted_wer, weighted_cer, detailed_results = calculate_metrics(df)
|
| 186 |
|
|
@@ -194,7 +160,7 @@ def process_submission(model_name, csv_file):
|
|
| 194 |
leaderboard = pd.read_csv(leaderboard_file)
|
| 195 |
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 196 |
|
| 197 |
-
#
|
| 198 |
combined_score = avg_wer * 0.7 + avg_cer * 0.3
|
| 199 |
|
| 200 |
new_entry = pd.DataFrame(
|
|
@@ -210,23 +176,6 @@ def process_submission(model_name, csv_file):
|
|
| 210 |
except Exception as e:
|
| 211 |
return f"Error processing submission: {str(e)}", None
|
| 212 |
|
| 213 |
-
# Make sure we have at least some data for first-time visitors
|
| 214 |
-
if os.path.exists(leaderboard_file):
|
| 215 |
-
leaderboard_df = pd.read_csv(leaderboard_file)
|
| 216 |
-
if len(leaderboard_df) == 0:
|
| 217 |
-
# Add example entries if leaderboard is empty
|
| 218 |
-
example_data = [
|
| 219 |
-
["Example Model 1", 0.35, 0.20, 0.305, "2023-01-01 00:00:00"],
|
| 220 |
-
["Example Model 2", 0.40, 0.18, 0.334, "2023-01-02 00:00:00"],
|
| 221 |
-
["Example Model 3", 0.32, 0.25, 0.299, "2023-01-03 00:00:00"]
|
| 222 |
-
]
|
| 223 |
-
example_df = pd.DataFrame(
|
| 224 |
-
example_data,
|
| 225 |
-
columns=["Model_Name", "WER", "CER", "Combined_Score", "timestamp"]
|
| 226 |
-
)
|
| 227 |
-
example_df.to_csv(leaderboard_file, index=False)
|
| 228 |
-
print("Added example data to empty leaderboard for demonstration")
|
| 229 |
-
|
| 230 |
with gr.Blocks(title="Bambara ASR Leaderboard") as demo:
|
| 231 |
gr.Markdown(
|
| 232 |
"""
|
|
@@ -240,17 +189,13 @@ with gr.Blocks(title="Bambara ASR Leaderboard") as demo:
|
|
| 240 |
with gr.Tabs() as tabs:
|
| 241 |
with gr.TabItem("🏅 Current Rankings"):
|
| 242 |
try:
|
| 243 |
-
# Load and make sure we have current leaderboard data
|
| 244 |
current_leaderboard = pd.read_csv(leaderboard_file)
|
| 245 |
|
| 246 |
if "Combined_Score" not in current_leaderboard.columns:
|
| 247 |
current_leaderboard["Combined_Score"] = current_leaderboard["WER"] * 0.7 + current_leaderboard["CER"] * 0.3
|
| 248 |
|
| 249 |
-
# Sort by combined score
|
| 250 |
current_leaderboard = current_leaderboard.sort_values("Combined_Score")
|
| 251 |
-
except Exception
|
| 252 |
-
print(f"Error loading leaderboard: {str(e)}")
|
| 253 |
-
# Create empty dataframe if we can't load the file
|
| 254 |
current_leaderboard = pd.DataFrame(columns=["Model_Name", "WER", "CER", "Combined_Score", "timestamp"])
|
| 255 |
|
| 256 |
gr.Markdown("### Current ASR Model Rankings")
|
|
@@ -310,7 +255,5 @@ with gr.Blocks(title="Bambara ASR Leaderboard") as demo:
|
|
| 310 |
outputs=[output_msg, leaderboard_display]
|
| 311 |
)
|
| 312 |
|
| 313 |
-
print("Starting Bambara ASR Leaderboard app...")
|
| 314 |
-
|
| 315 |
if __name__ == "__main__":
|
| 316 |
demo.launch(share=True)
|
|
|
|
| 8 |
|
| 9 |
from huggingface_hub import login
|
| 10 |
|
|
|
|
| 11 |
token = os.environ.get("HG_TOKEN")
|
| 12 |
login(token)
|
| 13 |
|
|
|
|
| 14 |
try:
|
| 15 |
dataset = load_dataset("sudoping01/bambara-speech-recognition-benchmark", name="default")["eval"]
|
| 16 |
references = {row["id"]: row["text"] for row in dataset}
|
|
|
|
| 17 |
except Exception as e:
|
|
|
|
| 18 |
references = {}
|
|
|
|
| 19 |
|
| 20 |
+
|
| 21 |
leaderboard_file = "leaderboard.csv"
|
| 22 |
if not os.path.exists(leaderboard_file):
|
|
|
|
| 23 |
pd.DataFrame(columns=["Model_Name", "WER", "CER", "Combined_Score", "timestamp"]).to_csv(leaderboard_file, index=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
else:
|
|
|
|
| 25 |
leaderboard_df = pd.read_csv(leaderboard_file)
|
| 26 |
|
| 27 |
+
|
| 28 |
+
# if "submitter" in leaderboard_df.columns and "Model_Name" not in leaderboard_df.columns:
|
| 29 |
+
# leaderboard_df = leaderboard_df.rename(columns={"submitter": "Model_Name"})
|
| 30 |
+
# leaderboard_df.to_csv(leaderboard_file, index=False)
|
|
|
|
| 31 |
|
|
|
|
| 32 |
if "Combined_Score" not in leaderboard_df.columns:
|
| 33 |
+
leaderboard_df["Combined_Score"] = leaderboard_df["WER"] * 0.7 + leaderboard_df["CER"] * 0.3
|
| 34 |
leaderboard_df.to_csv(leaderboard_file, index=False)
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
def normalize_text(text):
|
| 37 |
"""
|
|
|
|
| 63 |
reference = normalize_text(references[id_val])
|
| 64 |
hypothesis = normalize_text(row["text"])
|
| 65 |
|
|
|
|
| 66 |
if not reference or not hypothesis:
|
|
|
|
| 67 |
continue
|
| 68 |
|
| 69 |
reference_words = reference.split()
|
|
|
|
| 71 |
reference_chars = list(reference)
|
| 72 |
|
| 73 |
try:
|
|
|
|
| 74 |
sample_wer = wer(reference, hypothesis)
|
| 75 |
sample_cer = cer(reference, hypothesis)
|
| 76 |
|
| 77 |
sample_wer = min(sample_wer, 2.0)
|
| 78 |
sample_cer = min(sample_cer, 2.0)
|
| 79 |
|
|
|
|
| 80 |
total_ref_words += len(reference_words)
|
| 81 |
total_ref_chars += len(reference_chars)
|
| 82 |
|
|
|
|
| 83 |
results.append({
|
| 84 |
"id": id_val,
|
| 85 |
"reference": reference,
|
|
|
|
| 89 |
"wer": sample_wer,
|
| 90 |
"cer": sample_cer
|
| 91 |
})
|
| 92 |
+
except Exception:
|
| 93 |
+
pass
|
| 94 |
|
| 95 |
if not results:
|
| 96 |
raise ValueError("No valid samples for WER/CER calculation")
|
| 97 |
|
| 98 |
+
|
| 99 |
avg_wer = sum(item["wer"] for item in results) / len(results)
|
| 100 |
avg_cer = sum(item["cer"] for item in results) / len(results)
|
| 101 |
|
|
|
|
| 111 |
current_lb = pd.read_csv(leaderboard_file)
|
| 112 |
|
| 113 |
if "Combined_Score" not in current_lb.columns:
|
| 114 |
+
current_lb["Combined_Score"] = current_lb["WER"] * 0.7 + current_lb["CER"] * 0.3
|
| 115 |
|
| 116 |
if method == "WER Only":
|
| 117 |
return current_lb.sort_values("WER")
|
|
|
|
| 119 |
return current_lb.sort_values("CER")
|
| 120 |
else: # Combined Score
|
| 121 |
return current_lb.sort_values("Combined_Score")
|
| 122 |
+
except Exception:
|
|
|
|
|
|
|
| 123 |
return pd.DataFrame(columns=["Model_Name", "WER", "CER", "Combined_Score", "timestamp"])
|
| 124 |
|
| 125 |
def process_submission(model_name, csv_file):
|
| 126 |
try:
|
| 127 |
df = pd.read_csv(csv_file)
|
|
|
|
| 128 |
|
| 129 |
if len(df) == 0:
|
| 130 |
return "Error: Uploaded CSV is empty.", None
|
|
|
|
| 136 |
dup_ids = df[df["id"].duplicated()]["id"].unique()
|
| 137 |
return f"Error: Duplicate IDs found: {', '.join(map(str, dup_ids[:5]))}", None
|
| 138 |
|
| 139 |
+
|
| 140 |
missing_ids = set(references.keys()) - set(df["id"])
|
| 141 |
extra_ids = set(df["id"]) - set(references.keys())
|
| 142 |
|
|
|
|
| 146 |
if extra_ids:
|
| 147 |
return f"Error: Found {len(extra_ids)} extra IDs not in reference dataset. First few extra: {', '.join(map(str, list(extra_ids)[:5]))}", None
|
| 148 |
|
| 149 |
+
|
| 150 |
try:
|
| 151 |
avg_wer, avg_cer, weighted_wer, weighted_cer, detailed_results = calculate_metrics(df)
|
| 152 |
|
|
|
|
| 160 |
leaderboard = pd.read_csv(leaderboard_file)
|
| 161 |
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 162 |
|
| 163 |
+
# Calculate combined score (70% WER, 30% CER)
|
| 164 |
combined_score = avg_wer * 0.7 + avg_cer * 0.3
|
| 165 |
|
| 166 |
new_entry = pd.DataFrame(
|
|
|
|
| 176 |
except Exception as e:
|
| 177 |
return f"Error processing submission: {str(e)}", None
|
| 178 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 179 |
with gr.Blocks(title="Bambara ASR Leaderboard") as demo:
|
| 180 |
gr.Markdown(
|
| 181 |
"""
|
|
|
|
| 189 |
with gr.Tabs() as tabs:
|
| 190 |
with gr.TabItem("🏅 Current Rankings"):
|
| 191 |
try:
|
|
|
|
| 192 |
current_leaderboard = pd.read_csv(leaderboard_file)
|
| 193 |
|
| 194 |
if "Combined_Score" not in current_leaderboard.columns:
|
| 195 |
current_leaderboard["Combined_Score"] = current_leaderboard["WER"] * 0.7 + current_leaderboard["CER"] * 0.3
|
| 196 |
|
|
|
|
| 197 |
current_leaderboard = current_leaderboard.sort_values("Combined_Score")
|
| 198 |
+
except Exception:
|
|
|
|
|
|
|
| 199 |
current_leaderboard = pd.DataFrame(columns=["Model_Name", "WER", "CER", "Combined_Score", "timestamp"])
|
| 200 |
|
| 201 |
gr.Markdown("### Current ASR Model Rankings")
|
|
|
|
| 255 |
outputs=[output_msg, leaderboard_display]
|
| 256 |
)
|
| 257 |
|
|
|
|
|
|
|
| 258 |
if __name__ == "__main__":
|
| 259 |
demo.launch(share=True)
|