Luigi's picture
add 2 more models
f7a541f
raw
history blame
11.2 kB
import streamlit as st
import os, gc, shutil, re, time, threading, queue
from itertools import islice
from llama_cpp import Llama
from llama_cpp.llama_speculative import LlamaPromptLookupDecoding
from huggingface_hub import hf_hub_download
from duckduckgo_search import DDGS
# ---- Initialize session state ----
if "chat_history" not in st.session_state:
st.session_state.chat_history = []
if "pending_response" not in st.session_state:
st.session_state.pending_response = False
if "model_name" not in st.session_state:
st.session_state.model_name = None
if "llm" not in st.session_state:
st.session_state.llm = None
# ---- Custom CSS ----
st.markdown("""
<style>
ul.think-list { margin: 0.5em 0 1em 1.5em; padding: 0; list-style-type: disc; }
ul.think-list li { margin-bottom: 0.5em; }
.chat-assistant { background-color: #f9f9f9; padding: 1em; border-radius: 5px; margin-bottom: 1em; }
</style>
""", unsafe_allow_html=True)
# ---- Required storage space ----
REQUIRED_SPACE_BYTES = 5 * 1024 ** 3 # 5 GB
# ---- Function to retrieve web search context ----
def retrieve_context(query, max_results=6, max_chars_per_result=600):
try:
with DDGS() as ddgs:
results = list(islice(ddgs.text(query, region="wt-wt", safesearch="off", timelimit="y"), max_results))
context = ""
for i, result in enumerate(results, start=1):
title = result.get("title", "No Title")
snippet = result.get("body", "")[:max_chars_per_result]
context += f"Result {i}:\nTitle: {title}\nSnippet: {snippet}\n\n"
return context.strip()
except Exception as e:
st.error(f"Error during retrieval: {e}")
return ""
# ---- Model definitions ----
MODELS = {
"Qwen2.5-0.5B-Instruct (Q4_K_M)": {
"repo_id": "Qwen/Qwen2.5-0.5B-Instruct-GGUF",
"filename": "qwen2.5-0.5b-instruct-q4_k_m.gguf",
"description": "Qwen2.5-0.5B-Instruct (Q4_K_M)"
},
"Gemma-3.1B-it (Q4_K_M)": {
"repo_id": "unsloth/gemma-3-1b-it-GGUF",
"filename": "gemma-3-1b-it-Q4_K_M.gguf",
"description": "Gemma-3.1B-it (Q4_K_M)"
},
"Qwen2.5-1.5B-Instruct (Q4_K_M)": {
"repo_id": "Qwen/Qwen2.5-1.5B-Instruct-GGUF",
"filename": "qwen2.5-1.5b-instruct-q4_k_m.gguf",
"description": "Qwen2.5-1.5B-Instruct (Q4_K_M)"
},
"Qwen2.5-3B-Instruct (Q4_K_M)": {
"repo_id": "Qwen/Qwen2.5-3B-Instruct-GGUF",
"filename": "qwen2.5-3b-instruct-q4_k_m.gguf",
"description": "Qwen2.5-3B-Instruct (Q4_K_M)"
},
"Qwen2.5-7B-Instruct (Q2_K)": {
"repo_id": "Qwen/Qwen2.5-7B-Instruct-GGUF",
"filename": "qwen2.5-7b-instruct-q2_k.gguf",
"description": "Qwen2.5-7B Instruct (Q2_K)"
},
"Gemma-3-4B-IT (Q4_K_M)": {
"repo_id": "unsloth/gemma-3-4b-it-GGUF",
"filename": "gemma-3-4b-it-Q4_K_M.gguf",
"description": "Gemma 3 4B IT (Q4_K_M)"
},
"Phi-4-mini-Instruct (Q4_K_M)": {
"repo_id": "unsloth/Phi-4-mini-instruct-GGUF",
"filename": "Phi-4-mini-instruct-Q4_K_M.gguf",
"description": "Phi-4 Mini Instruct (Q4_K_M)"
},
"Meta-Llama-3.1-8B-Instruct (Q2_K)": {
"repo_id": "MaziyarPanahi/Meta-Llama-3.1-8B-Instruct-GGUF",
"filename": "Meta-Llama-3.1-8B-Instruct.Q2_K.gguf",
"description": "Meta-Llama-3.1-8B-Instruct (Q2_K)"
},
"DeepSeek-R1-Distill-Llama-8B (Q2_K)": {
"repo_id": "unsloth/DeepSeek-R1-Distill-Llama-8B-GGUF",
"filename": "DeepSeek-R1-Distill-Llama-8B-Q2_K.gguf",
"description": "DeepSeek-R1-Distill-Llama-8B (Q2_K)"
},
"Mistral-7B-Instruct-v0.3 (IQ3_XS)": {
"repo_id": "MaziyarPanahi/Mistral-7B-Instruct-v0.3-GGUF",
"filename": "Mistral-7B-Instruct-v0.3.IQ3_XS.gguf",
"description": "Mistral-7B-Instruct-v0.3 (IQ3_XS)"
},
"Qwen2.5-Coder-7B-Instruct (Q2_K)": {
"repo_id": "Qwen/Qwen2.5-Coder-7B-Instruct-GGUF",
"filename": "qwen2.5-coder-7b-instruct-q2_k.gguf",
"description": "Qwen2.5-Coder-7B-Instruct (Q2_K)"
},
}
# ----- Sidebar settings -----
with st.sidebar:
st.header("⚙️ Settings")
selected_model_name = st.selectbox("Select Model", list(MODELS.keys()))
system_prompt_base = st.text_area("System Prompt", value="You are a helpful assistant.", height=80)
max_tokens = st.slider("Max tokens", 64, 1024, 256, step=32)
temperature = st.slider("Temperature", 0.1, 2.0, 0.7)
top_k = st.slider("Top-K", 1, 100, 40)
top_p = st.slider("Top-P", 0.1, 1.0, 0.95)
repeat_penalty = st.slider("Repetition Penalty", 1.0, 2.0, 1.1)
enable_search = st.checkbox("Enable Web Search", value=False)
# ---- Define selected model and manage its download/load ----
selected_model = MODELS[selected_model_name]
model_path = os.path.join("models", selected_model["filename"])
os.makedirs("models", exist_ok=True)
def try_load_model(path):
try:
return Llama(
model_path=path,
n_ctx=2048, # Reduced context window
n_threads=2,
n_threads_batch=1,
n_batch=256,
n_gpu_layers=0,
use_mlock=True,
use_mmap=True,
verbose=False,
logits_all=True,
draft_model=LlamaPromptLookupDecoding(num_pred_tokens=2),
)
except Exception as e:
return str(e)
def download_model():
with st.spinner(f"Downloading {selected_model['filename']}..."):
hf_hub_download(
repo_id=selected_model["repo_id"],
filename=selected_model["filename"],
local_dir="./models",
local_dir_use_symlinks=False,
)
def validate_or_download_model():
if not os.path.exists(model_path):
if shutil.disk_usage(".").free < REQUIRED_SPACE_BYTES:
st.info("Insufficient storage. Consider cleaning up old models.")
download_model()
result = try_load_model(model_path)
if isinstance(result, str):
st.warning(f"Initial load failed: {result}\nRe-downloading...")
try:
os.remove(model_path)
except Exception:
pass
download_model()
result = try_load_model(model_path)
if isinstance(result, str):
st.error(f"Model still failed after re-download: {result}")
st.stop()
return result
if st.session_state.model_name != selected_model_name:
if st.session_state.llm is not None:
del st.session_state.llm
gc.collect()
st.session_state.llm = validate_or_download_model()
st.session_state.model_name = selected_model_name
llm = st.session_state.llm
# ---- Display title and existing chat history ----
st.title(f"🧠 {selected_model['description']} (Streamlit + GGUF)")
st.caption(f"Powered by `llama.cpp` | Model: {selected_model['filename']}")
for chat in st.session_state.chat_history:
with st.chat_message(chat["role"]):
st.markdown(chat["content"])
# ---- Chat input and processing ----
user_input = st.chat_input("Ask something...")
if user_input:
if st.session_state.pending_response:
st.warning("Please wait for the assistant to finish responding.")
else:
# Display user input and update chat history
with st.chat_message("user"):
st.markdown(user_input)
st.session_state.chat_history.append({"role": "user", "content": user_input})
st.session_state.pending_response = True
# Optionally retrieve extra context
retrieved_context = retrieve_context(user_input, max_results=6, max_chars_per_result=600) if enable_search else ""
st.sidebar.markdown("### Retrieved Context" if enable_search else "Web Search Disabled")
st.sidebar.text(retrieved_context or "No context found.")
# Build augmented query
if enable_search and retrieved_context:
augmented_user_input = (
f"{system_prompt_base.strip()}\n\n"
f"Use the following recent web search context to help answer the query:\n\n"
f"{retrieved_context}\n\n"
f"User Query: {user_input}"
)
else:
augmented_user_input = f"{system_prompt_base.strip()}\n\nUser Query: {user_input}"
# Limit conversation history (last 2 pairs)
MAX_TURNS = 2
trimmed_history = st.session_state.chat_history[-(MAX_TURNS * 2):]
if trimmed_history and trimmed_history[-1]["role"] == "user":
messages = trimmed_history[:-1] + [{"role": "user", "content": augmented_user_input}]
else:
messages = trimmed_history + [{"role": "user", "content": augmented_user_input}]
# ---- Set up a placeholder for the response and queue for streaming tokens ----
visible_placeholder = st.empty()
response_queue = queue.Queue()
# Function to stream LLM response and push incremental updates into the queue
def stream_response(msgs, max_tokens, temp, topk, topp, repeat_penalty):
final_text = ""
try:
stream = llm.create_chat_completion(
messages=msgs,
max_tokens=max_tokens,
temperature=temp,
top_k=topk,
top_p=topp,
repeat_penalty=repeat_penalty,
stream=True,
)
for chunk in stream:
if "choices" in chunk:
delta = chunk["choices"][0]["delta"].get("content", "")
final_text += delta
response_queue.put(delta)
if chunk["choices"][0].get("finish_reason", ""):
break
except Exception as e:
response_queue.put(f"\nError: {e}")
response_queue.put(None) # Signal completion
# Start streaming in a separate thread
stream_thread = threading.Thread(
target=stream_response,
args=(messages, max_tokens, temperature, top_k, top_p, repeat_penalty),
daemon=True
)
stream_thread.start()
# Poll the queue in the main thread for up to 5 seconds
final_response = ""
timeout = 300 # seconds
start_time = time.time()
while True:
try:
update = response_queue.get(timeout=0.1)
if update is None:
break
final_response += update
visible_response = re.sub(r"<think>.*?</think>", "", final_response, flags=re.DOTALL)
visible_response = re.sub(r"<think>.*$", "", visible_response, flags=re.DOTALL)
visible_placeholder.markdown(visible_response)
except queue.Empty:
if time.time() - start_time > timeout:
st.error("Response generation timed out.")
break
st.session_state.chat_history.append({"role": "assistant", "content": final_response})
st.session_state.pending_response = False
gc.collect()