File size: 11,201 Bytes
0ff6c39
248f5a7
 
0ff6c39
a7fdfe6
0ff6c39
248f5a7
0ff6c39
248f5a7
 
 
 
 
 
 
 
 
9d3ca6c
248f5a7
 
 
 
 
 
9d3ca6c
248f5a7
9d3ca6c
248f5a7
4522453
 
248f5a7
1155897
4e60755
 
248f5a7
4e60755
248f5a7
 
 
 
4e60755
 
 
 
 
248f5a7
cd26609
4e60755
 
 
 
 
 
 
 
 
 
f7a541f
 
 
 
 
 
 
 
 
 
cd26609
 
 
 
 
0813164
cd26609
0813164
 
cd26609
37ee1f3
cd26609
37ee1f3
 
cd26609
d554072
 
 
afa19a3
d554072
 
 
 
afa19a3
d554072
 
 
 
afa19a3
d554072
 
 
 
afa19a3
d554072
cd26609
 
9d3ca6c
cd26609
 
 
4e60755
248f5a7
cd26609
 
 
 
4e60755
afa19a3
248f5a7
cd26609
 
37ee1f3
 
afa19a3
 
4522453
 
9ba47d1
248f5a7
4e60755
20484f3
4522453
20484f3
4522453
 
a7fdfe6
 
4522453
afa19a3
 
 
4e60755
 
 
 
 
 
 
 
 
6e8312c
 
248f5a7
4e60755
6e8312c
afa19a3
 
248f5a7
6e8312c
 
4522453
6e8312c
 
afa19a3
 
 
 
 
3e4847c
afa19a3
 
 
 
 
 
 
 
 
248f5a7
afa19a3
 
 
4522453
 
 
 
248f5a7
afa19a3
 
4522453
 
afa19a3
248f5a7
afa19a3
 
06a162a
4522453
 
248f5a7
d9421eb
4e60755
 
 
248f5a7
06a162a
 
 
 
 
 
4e60755
 
06a162a
 
248f5a7
4e60755
4522453
06a162a
 
 
 
afa19a3
248f5a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71d28c5
248f5a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4522453
248f5a7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import streamlit as st
import os, gc, shutil, re, time, threading, queue
from itertools import islice
from llama_cpp import Llama
from llama_cpp.llama_speculative import LlamaPromptLookupDecoding
from huggingface_hub import hf_hub_download
from duckduckgo_search import DDGS

# ---- Initialize session state ----
if "chat_history" not in st.session_state:
    st.session_state.chat_history = []
if "pending_response" not in st.session_state:
    st.session_state.pending_response = False
if "model_name" not in st.session_state:
    st.session_state.model_name = None
if "llm" not in st.session_state:
    st.session_state.llm = None

# ---- Custom CSS ----
st.markdown("""
<style>
ul.think-list { margin: 0.5em 0 1em 1.5em; padding: 0; list-style-type: disc; }
ul.think-list li { margin-bottom: 0.5em; }
.chat-assistant { background-color: #f9f9f9; padding: 1em; border-radius: 5px; margin-bottom: 1em; }
</style>
""", unsafe_allow_html=True)

# ---- Required storage space ----
REQUIRED_SPACE_BYTES = 5 * 1024 ** 3  # 5 GB

# ---- Function to retrieve web search context ----
def retrieve_context(query, max_results=6, max_chars_per_result=600):
    try:
        with DDGS() as ddgs:
            results = list(islice(ddgs.text(query, region="wt-wt", safesearch="off", timelimit="y"), max_results))
            context = ""
            for i, result in enumerate(results, start=1):
                title = result.get("title", "No Title")
                snippet = result.get("body", "")[:max_chars_per_result]
                context += f"Result {i}:\nTitle: {title}\nSnippet: {snippet}\n\n"
            return context.strip()
    except Exception as e:
        st.error(f"Error during retrieval: {e}")
        return ""

# ---- Model definitions ----
MODELS = {
    "Qwen2.5-0.5B-Instruct (Q4_K_M)": {
        "repo_id": "Qwen/Qwen2.5-0.5B-Instruct-GGUF",
        "filename": "qwen2.5-0.5b-instruct-q4_k_m.gguf",
        "description": "Qwen2.5-0.5B-Instruct (Q4_K_M)"
    },
    "Gemma-3.1B-it (Q4_K_M)": {
        "repo_id": "unsloth/gemma-3-1b-it-GGUF",
        "filename": "gemma-3-1b-it-Q4_K_M.gguf",
        "description": "Gemma-3.1B-it (Q4_K_M)"
    },
    "Qwen2.5-1.5B-Instruct (Q4_K_M)": {
        "repo_id": "Qwen/Qwen2.5-1.5B-Instruct-GGUF",
        "filename": "qwen2.5-1.5b-instruct-q4_k_m.gguf",
        "description": "Qwen2.5-1.5B-Instruct (Q4_K_M)"
    },
    "Qwen2.5-3B-Instruct (Q4_K_M)": {
        "repo_id": "Qwen/Qwen2.5-3B-Instruct-GGUF",
        "filename": "qwen2.5-3b-instruct-q4_k_m.gguf",
        "description": "Qwen2.5-3B-Instruct (Q4_K_M)"
    },
    "Qwen2.5-7B-Instruct (Q2_K)": {
        "repo_id": "Qwen/Qwen2.5-7B-Instruct-GGUF",
        "filename": "qwen2.5-7b-instruct-q2_k.gguf",
        "description": "Qwen2.5-7B Instruct (Q2_K)"
    },
    "Gemma-3-4B-IT (Q4_K_M)": {
        "repo_id": "unsloth/gemma-3-4b-it-GGUF",
        "filename": "gemma-3-4b-it-Q4_K_M.gguf",
        "description": "Gemma 3 4B IT (Q4_K_M)"
    },
    "Phi-4-mini-Instruct (Q4_K_M)": {
        "repo_id": "unsloth/Phi-4-mini-instruct-GGUF",
        "filename": "Phi-4-mini-instruct-Q4_K_M.gguf",
        "description": "Phi-4 Mini Instruct (Q4_K_M)"
    },
    "Meta-Llama-3.1-8B-Instruct (Q2_K)": {
        "repo_id": "MaziyarPanahi/Meta-Llama-3.1-8B-Instruct-GGUF",
        "filename": "Meta-Llama-3.1-8B-Instruct.Q2_K.gguf",
        "description": "Meta-Llama-3.1-8B-Instruct (Q2_K)"
    },
    "DeepSeek-R1-Distill-Llama-8B (Q2_K)": {
        "repo_id": "unsloth/DeepSeek-R1-Distill-Llama-8B-GGUF",
        "filename": "DeepSeek-R1-Distill-Llama-8B-Q2_K.gguf",
        "description": "DeepSeek-R1-Distill-Llama-8B (Q2_K)"
    },
    "Mistral-7B-Instruct-v0.3 (IQ3_XS)": {
        "repo_id": "MaziyarPanahi/Mistral-7B-Instruct-v0.3-GGUF",
        "filename": "Mistral-7B-Instruct-v0.3.IQ3_XS.gguf",
        "description": "Mistral-7B-Instruct-v0.3 (IQ3_XS)"
    },
    "Qwen2.5-Coder-7B-Instruct (Q2_K)": {
        "repo_id": "Qwen/Qwen2.5-Coder-7B-Instruct-GGUF",
        "filename": "qwen2.5-coder-7b-instruct-q2_k.gguf",
        "description": "Qwen2.5-Coder-7B-Instruct (Q2_K)"
    },
}

# ----- Sidebar settings -----
with st.sidebar:
    st.header("⚙️ Settings")
    selected_model_name = st.selectbox("Select Model", list(MODELS.keys()))
    system_prompt_base = st.text_area("System Prompt", value="You are a helpful assistant.", height=80)
    max_tokens = st.slider("Max tokens", 64, 1024, 256, step=32)
    temperature = st.slider("Temperature", 0.1, 2.0, 0.7)
    top_k = st.slider("Top-K", 1, 100, 40)
    top_p = st.slider("Top-P", 0.1, 1.0, 0.95)
    repeat_penalty = st.slider("Repetition Penalty", 1.0, 2.0, 1.1)
    enable_search = st.checkbox("Enable Web Search", value=False)

# ---- Define selected model and manage its download/load ----
selected_model = MODELS[selected_model_name]
model_path = os.path.join("models", selected_model["filename"])
os.makedirs("models", exist_ok=True)

def try_load_model(path):
    try:
        return Llama(
            model_path=path,
            n_ctx=2048,  # Reduced context window
            n_threads=2,
            n_threads_batch=1,
            n_batch=256,
            n_gpu_layers=0,
            use_mlock=True,
            use_mmap=True,
            verbose=False,
            logits_all=True,
            draft_model=LlamaPromptLookupDecoding(num_pred_tokens=2),
        )
    except Exception as e:
        return str(e)

def download_model():
    with st.spinner(f"Downloading {selected_model['filename']}..."):
        hf_hub_download(
            repo_id=selected_model["repo_id"],
            filename=selected_model["filename"],
            local_dir="./models",
            local_dir_use_symlinks=False,
        )

def validate_or_download_model():
    if not os.path.exists(model_path):
        if shutil.disk_usage(".").free < REQUIRED_SPACE_BYTES:
            st.info("Insufficient storage. Consider cleaning up old models.")
        download_model()
    result = try_load_model(model_path)
    if isinstance(result, str):
        st.warning(f"Initial load failed: {result}\nRe-downloading...")
        try:
            os.remove(model_path)
        except Exception:
            pass
        download_model()
        result = try_load_model(model_path)
        if isinstance(result, str):
            st.error(f"Model still failed after re-download: {result}")
            st.stop()
    return result

if st.session_state.model_name != selected_model_name:
    if st.session_state.llm is not None:
        del st.session_state.llm
        gc.collect()
    st.session_state.llm = validate_or_download_model()
    st.session_state.model_name = selected_model_name

llm = st.session_state.llm

# ---- Display title and existing chat history ----
st.title(f"🧠 {selected_model['description']} (Streamlit + GGUF)")
st.caption(f"Powered by `llama.cpp` | Model: {selected_model['filename']}")

for chat in st.session_state.chat_history:
    with st.chat_message(chat["role"]):
        st.markdown(chat["content"])

# ---- Chat input and processing ----
user_input = st.chat_input("Ask something...")
if user_input:
    if st.session_state.pending_response:
        st.warning("Please wait for the assistant to finish responding.")
    else:
        # Display user input and update chat history
        with st.chat_message("user"):
            st.markdown(user_input)
        st.session_state.chat_history.append({"role": "user", "content": user_input})
        st.session_state.pending_response = True

        # Optionally retrieve extra context
        retrieved_context = retrieve_context(user_input, max_results=6, max_chars_per_result=600) if enable_search else ""
        st.sidebar.markdown("### Retrieved Context" if enable_search else "Web Search Disabled")
        st.sidebar.text(retrieved_context or "No context found.")

        # Build augmented query
        if enable_search and retrieved_context:
            augmented_user_input = (
                f"{system_prompt_base.strip()}\n\n"
                f"Use the following recent web search context to help answer the query:\n\n"
                f"{retrieved_context}\n\n"
                f"User Query: {user_input}"
            )
        else:
            augmented_user_input = f"{system_prompt_base.strip()}\n\nUser Query: {user_input}"
        
        # Limit conversation history (last 2 pairs)
        MAX_TURNS = 2
        trimmed_history = st.session_state.chat_history[-(MAX_TURNS * 2):]
        if trimmed_history and trimmed_history[-1]["role"] == "user":
            messages = trimmed_history[:-1] + [{"role": "user", "content": augmented_user_input}]
        else:
            messages = trimmed_history + [{"role": "user", "content": augmented_user_input}]

        # ---- Set up a placeholder for the response and queue for streaming tokens ----
        visible_placeholder = st.empty()
        response_queue = queue.Queue()

        # Function to stream LLM response and push incremental updates into the queue
        def stream_response(msgs, max_tokens, temp, topk, topp, repeat_penalty):
            final_text = ""
            try:
                stream = llm.create_chat_completion(
                    messages=msgs,
                    max_tokens=max_tokens,
                    temperature=temp,
                    top_k=topk,
                    top_p=topp,
                    repeat_penalty=repeat_penalty,
                    stream=True,
                )
                for chunk in stream:
                    if "choices" in chunk:
                        delta = chunk["choices"][0]["delta"].get("content", "")
                        final_text += delta
                        response_queue.put(delta)
                        if chunk["choices"][0].get("finish_reason", ""):
                            break
            except Exception as e:
                response_queue.put(f"\nError: {e}")
            response_queue.put(None)  # Signal completion

        # Start streaming in a separate thread
        stream_thread = threading.Thread(
            target=stream_response,
            args=(messages, max_tokens, temperature, top_k, top_p, repeat_penalty),
            daemon=True
        )
        stream_thread.start()

        # Poll the queue in the main thread for up to 5 seconds
        final_response = ""
        timeout = 300  # seconds
        start_time = time.time()
        while True:
            try:
                update = response_queue.get(timeout=0.1)
                if update is None:
                    break
                final_response += update
                visible_response = re.sub(r"<think>.*?</think>", "", final_response, flags=re.DOTALL)
                visible_response = re.sub(r"<think>.*$", "", visible_response, flags=re.DOTALL)
                visible_placeholder.markdown(visible_response)
            except queue.Empty:
                if time.time() - start_time > timeout:
                    st.error("Response generation timed out.")
                    break

        st.session_state.chat_history.append({"role": "assistant", "content": final_response})
        st.session_state.pending_response = False
        gc.collect()