Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,201 Bytes
0ff6c39 248f5a7 0ff6c39 a7fdfe6 0ff6c39 248f5a7 0ff6c39 248f5a7 9d3ca6c 248f5a7 9d3ca6c 248f5a7 9d3ca6c 248f5a7 4522453 248f5a7 1155897 4e60755 248f5a7 4e60755 248f5a7 4e60755 248f5a7 cd26609 4e60755 f7a541f cd26609 0813164 cd26609 0813164 cd26609 37ee1f3 cd26609 37ee1f3 cd26609 d554072 afa19a3 d554072 afa19a3 d554072 afa19a3 d554072 afa19a3 d554072 cd26609 9d3ca6c cd26609 4e60755 248f5a7 cd26609 4e60755 afa19a3 248f5a7 cd26609 37ee1f3 afa19a3 4522453 9ba47d1 248f5a7 4e60755 20484f3 4522453 20484f3 4522453 a7fdfe6 4522453 afa19a3 4e60755 6e8312c 248f5a7 4e60755 6e8312c afa19a3 248f5a7 6e8312c 4522453 6e8312c afa19a3 3e4847c afa19a3 248f5a7 afa19a3 4522453 248f5a7 afa19a3 4522453 afa19a3 248f5a7 afa19a3 06a162a 4522453 248f5a7 d9421eb 4e60755 248f5a7 06a162a 4e60755 06a162a 248f5a7 4e60755 4522453 06a162a afa19a3 248f5a7 71d28c5 248f5a7 4522453 248f5a7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
import streamlit as st
import os, gc, shutil, re, time, threading, queue
from itertools import islice
from llama_cpp import Llama
from llama_cpp.llama_speculative import LlamaPromptLookupDecoding
from huggingface_hub import hf_hub_download
from duckduckgo_search import DDGS
# ---- Initialize session state ----
if "chat_history" not in st.session_state:
st.session_state.chat_history = []
if "pending_response" not in st.session_state:
st.session_state.pending_response = False
if "model_name" not in st.session_state:
st.session_state.model_name = None
if "llm" not in st.session_state:
st.session_state.llm = None
# ---- Custom CSS ----
st.markdown("""
<style>
ul.think-list { margin: 0.5em 0 1em 1.5em; padding: 0; list-style-type: disc; }
ul.think-list li { margin-bottom: 0.5em; }
.chat-assistant { background-color: #f9f9f9; padding: 1em; border-radius: 5px; margin-bottom: 1em; }
</style>
""", unsafe_allow_html=True)
# ---- Required storage space ----
REQUIRED_SPACE_BYTES = 5 * 1024 ** 3 # 5 GB
# ---- Function to retrieve web search context ----
def retrieve_context(query, max_results=6, max_chars_per_result=600):
try:
with DDGS() as ddgs:
results = list(islice(ddgs.text(query, region="wt-wt", safesearch="off", timelimit="y"), max_results))
context = ""
for i, result in enumerate(results, start=1):
title = result.get("title", "No Title")
snippet = result.get("body", "")[:max_chars_per_result]
context += f"Result {i}:\nTitle: {title}\nSnippet: {snippet}\n\n"
return context.strip()
except Exception as e:
st.error(f"Error during retrieval: {e}")
return ""
# ---- Model definitions ----
MODELS = {
"Qwen2.5-0.5B-Instruct (Q4_K_M)": {
"repo_id": "Qwen/Qwen2.5-0.5B-Instruct-GGUF",
"filename": "qwen2.5-0.5b-instruct-q4_k_m.gguf",
"description": "Qwen2.5-0.5B-Instruct (Q4_K_M)"
},
"Gemma-3.1B-it (Q4_K_M)": {
"repo_id": "unsloth/gemma-3-1b-it-GGUF",
"filename": "gemma-3-1b-it-Q4_K_M.gguf",
"description": "Gemma-3.1B-it (Q4_K_M)"
},
"Qwen2.5-1.5B-Instruct (Q4_K_M)": {
"repo_id": "Qwen/Qwen2.5-1.5B-Instruct-GGUF",
"filename": "qwen2.5-1.5b-instruct-q4_k_m.gguf",
"description": "Qwen2.5-1.5B-Instruct (Q4_K_M)"
},
"Qwen2.5-3B-Instruct (Q4_K_M)": {
"repo_id": "Qwen/Qwen2.5-3B-Instruct-GGUF",
"filename": "qwen2.5-3b-instruct-q4_k_m.gguf",
"description": "Qwen2.5-3B-Instruct (Q4_K_M)"
},
"Qwen2.5-7B-Instruct (Q2_K)": {
"repo_id": "Qwen/Qwen2.5-7B-Instruct-GGUF",
"filename": "qwen2.5-7b-instruct-q2_k.gguf",
"description": "Qwen2.5-7B Instruct (Q2_K)"
},
"Gemma-3-4B-IT (Q4_K_M)": {
"repo_id": "unsloth/gemma-3-4b-it-GGUF",
"filename": "gemma-3-4b-it-Q4_K_M.gguf",
"description": "Gemma 3 4B IT (Q4_K_M)"
},
"Phi-4-mini-Instruct (Q4_K_M)": {
"repo_id": "unsloth/Phi-4-mini-instruct-GGUF",
"filename": "Phi-4-mini-instruct-Q4_K_M.gguf",
"description": "Phi-4 Mini Instruct (Q4_K_M)"
},
"Meta-Llama-3.1-8B-Instruct (Q2_K)": {
"repo_id": "MaziyarPanahi/Meta-Llama-3.1-8B-Instruct-GGUF",
"filename": "Meta-Llama-3.1-8B-Instruct.Q2_K.gguf",
"description": "Meta-Llama-3.1-8B-Instruct (Q2_K)"
},
"DeepSeek-R1-Distill-Llama-8B (Q2_K)": {
"repo_id": "unsloth/DeepSeek-R1-Distill-Llama-8B-GGUF",
"filename": "DeepSeek-R1-Distill-Llama-8B-Q2_K.gguf",
"description": "DeepSeek-R1-Distill-Llama-8B (Q2_K)"
},
"Mistral-7B-Instruct-v0.3 (IQ3_XS)": {
"repo_id": "MaziyarPanahi/Mistral-7B-Instruct-v0.3-GGUF",
"filename": "Mistral-7B-Instruct-v0.3.IQ3_XS.gguf",
"description": "Mistral-7B-Instruct-v0.3 (IQ3_XS)"
},
"Qwen2.5-Coder-7B-Instruct (Q2_K)": {
"repo_id": "Qwen/Qwen2.5-Coder-7B-Instruct-GGUF",
"filename": "qwen2.5-coder-7b-instruct-q2_k.gguf",
"description": "Qwen2.5-Coder-7B-Instruct (Q2_K)"
},
}
# ----- Sidebar settings -----
with st.sidebar:
st.header("⚙️ Settings")
selected_model_name = st.selectbox("Select Model", list(MODELS.keys()))
system_prompt_base = st.text_area("System Prompt", value="You are a helpful assistant.", height=80)
max_tokens = st.slider("Max tokens", 64, 1024, 256, step=32)
temperature = st.slider("Temperature", 0.1, 2.0, 0.7)
top_k = st.slider("Top-K", 1, 100, 40)
top_p = st.slider("Top-P", 0.1, 1.0, 0.95)
repeat_penalty = st.slider("Repetition Penalty", 1.0, 2.0, 1.1)
enable_search = st.checkbox("Enable Web Search", value=False)
# ---- Define selected model and manage its download/load ----
selected_model = MODELS[selected_model_name]
model_path = os.path.join("models", selected_model["filename"])
os.makedirs("models", exist_ok=True)
def try_load_model(path):
try:
return Llama(
model_path=path,
n_ctx=2048, # Reduced context window
n_threads=2,
n_threads_batch=1,
n_batch=256,
n_gpu_layers=0,
use_mlock=True,
use_mmap=True,
verbose=False,
logits_all=True,
draft_model=LlamaPromptLookupDecoding(num_pred_tokens=2),
)
except Exception as e:
return str(e)
def download_model():
with st.spinner(f"Downloading {selected_model['filename']}..."):
hf_hub_download(
repo_id=selected_model["repo_id"],
filename=selected_model["filename"],
local_dir="./models",
local_dir_use_symlinks=False,
)
def validate_or_download_model():
if not os.path.exists(model_path):
if shutil.disk_usage(".").free < REQUIRED_SPACE_BYTES:
st.info("Insufficient storage. Consider cleaning up old models.")
download_model()
result = try_load_model(model_path)
if isinstance(result, str):
st.warning(f"Initial load failed: {result}\nRe-downloading...")
try:
os.remove(model_path)
except Exception:
pass
download_model()
result = try_load_model(model_path)
if isinstance(result, str):
st.error(f"Model still failed after re-download: {result}")
st.stop()
return result
if st.session_state.model_name != selected_model_name:
if st.session_state.llm is not None:
del st.session_state.llm
gc.collect()
st.session_state.llm = validate_or_download_model()
st.session_state.model_name = selected_model_name
llm = st.session_state.llm
# ---- Display title and existing chat history ----
st.title(f"🧠 {selected_model['description']} (Streamlit + GGUF)")
st.caption(f"Powered by `llama.cpp` | Model: {selected_model['filename']}")
for chat in st.session_state.chat_history:
with st.chat_message(chat["role"]):
st.markdown(chat["content"])
# ---- Chat input and processing ----
user_input = st.chat_input("Ask something...")
if user_input:
if st.session_state.pending_response:
st.warning("Please wait for the assistant to finish responding.")
else:
# Display user input and update chat history
with st.chat_message("user"):
st.markdown(user_input)
st.session_state.chat_history.append({"role": "user", "content": user_input})
st.session_state.pending_response = True
# Optionally retrieve extra context
retrieved_context = retrieve_context(user_input, max_results=6, max_chars_per_result=600) if enable_search else ""
st.sidebar.markdown("### Retrieved Context" if enable_search else "Web Search Disabled")
st.sidebar.text(retrieved_context or "No context found.")
# Build augmented query
if enable_search and retrieved_context:
augmented_user_input = (
f"{system_prompt_base.strip()}\n\n"
f"Use the following recent web search context to help answer the query:\n\n"
f"{retrieved_context}\n\n"
f"User Query: {user_input}"
)
else:
augmented_user_input = f"{system_prompt_base.strip()}\n\nUser Query: {user_input}"
# Limit conversation history (last 2 pairs)
MAX_TURNS = 2
trimmed_history = st.session_state.chat_history[-(MAX_TURNS * 2):]
if trimmed_history and trimmed_history[-1]["role"] == "user":
messages = trimmed_history[:-1] + [{"role": "user", "content": augmented_user_input}]
else:
messages = trimmed_history + [{"role": "user", "content": augmented_user_input}]
# ---- Set up a placeholder for the response and queue for streaming tokens ----
visible_placeholder = st.empty()
response_queue = queue.Queue()
# Function to stream LLM response and push incremental updates into the queue
def stream_response(msgs, max_tokens, temp, topk, topp, repeat_penalty):
final_text = ""
try:
stream = llm.create_chat_completion(
messages=msgs,
max_tokens=max_tokens,
temperature=temp,
top_k=topk,
top_p=topp,
repeat_penalty=repeat_penalty,
stream=True,
)
for chunk in stream:
if "choices" in chunk:
delta = chunk["choices"][0]["delta"].get("content", "")
final_text += delta
response_queue.put(delta)
if chunk["choices"][0].get("finish_reason", ""):
break
except Exception as e:
response_queue.put(f"\nError: {e}")
response_queue.put(None) # Signal completion
# Start streaming in a separate thread
stream_thread = threading.Thread(
target=stream_response,
args=(messages, max_tokens, temperature, top_k, top_p, repeat_penalty),
daemon=True
)
stream_thread.start()
# Poll the queue in the main thread for up to 5 seconds
final_response = ""
timeout = 300 # seconds
start_time = time.time()
while True:
try:
update = response_queue.get(timeout=0.1)
if update is None:
break
final_response += update
visible_response = re.sub(r"<think>.*?</think>", "", final_response, flags=re.DOTALL)
visible_response = re.sub(r"<think>.*$", "", visible_response, flags=re.DOTALL)
visible_placeholder.markdown(visible_response)
except queue.Empty:
if time.time() - start_time > timeout:
st.error("Response generation timed out.")
break
st.session_state.chat_history.append({"role": "assistant", "content": final_response})
st.session_state.pending_response = False
gc.collect()
|