import streamlit as st import os, gc, shutil, re, time, threading, queue from itertools import islice from llama_cpp import Llama from llama_cpp.llama_speculative import LlamaPromptLookupDecoding from huggingface_hub import hf_hub_download from duckduckgo_search import DDGS # ---- Initialize session state ---- if "chat_history" not in st.session_state: st.session_state.chat_history = [] if "pending_response" not in st.session_state: st.session_state.pending_response = False if "model_name" not in st.session_state: st.session_state.model_name = None if "llm" not in st.session_state: st.session_state.llm = None # ---- Custom CSS ---- st.markdown(""" """, unsafe_allow_html=True) # ---- Required storage space ---- REQUIRED_SPACE_BYTES = 5 * 1024 ** 3 # 5 GB # ---- Function to retrieve web search context ---- def retrieve_context(query, max_results=6, max_chars_per_result=600): try: with DDGS() as ddgs: results = list(islice(ddgs.text(query, region="wt-wt", safesearch="off", timelimit="y"), max_results)) context = "" for i, result in enumerate(results, start=1): title = result.get("title", "No Title") snippet = result.get("body", "")[:max_chars_per_result] context += f"Result {i}:\nTitle: {title}\nSnippet: {snippet}\n\n" return context.strip() except Exception as e: st.error(f"Error during retrieval: {e}") return "" # ---- Model definitions ---- MODELS = { "Qwen2.5-0.5B-Instruct (Q4_K_M)": { "repo_id": "Qwen/Qwen2.5-0.5B-Instruct-GGUF", "filename": "qwen2.5-0.5b-instruct-q4_k_m.gguf", "description": "Qwen2.5-0.5B-Instruct (Q4_K_M)" }, "Gemma-3.1B-it (Q4_K_M)": { "repo_id": "unsloth/gemma-3-1b-it-GGUF", "filename": "gemma-3-1b-it-Q4_K_M.gguf", "description": "Gemma-3.1B-it (Q4_K_M)" }, "Qwen2.5-1.5B-Instruct (Q4_K_M)": { "repo_id": "Qwen/Qwen2.5-1.5B-Instruct-GGUF", "filename": "qwen2.5-1.5b-instruct-q4_k_m.gguf", "description": "Qwen2.5-1.5B-Instruct (Q4_K_M)" }, "Qwen2.5-3B-Instruct (Q4_K_M)": { "repo_id": "Qwen/Qwen2.5-3B-Instruct-GGUF", "filename": "qwen2.5-3b-instruct-q4_k_m.gguf", "description": "Qwen2.5-3B-Instruct (Q4_K_M)" }, "Qwen2.5-7B-Instruct (Q2_K)": { "repo_id": "Qwen/Qwen2.5-7B-Instruct-GGUF", "filename": "qwen2.5-7b-instruct-q2_k.gguf", "description": "Qwen2.5-7B Instruct (Q2_K)" }, "Gemma-3-4B-IT (Q4_K_M)": { "repo_id": "unsloth/gemma-3-4b-it-GGUF", "filename": "gemma-3-4b-it-Q4_K_M.gguf", "description": "Gemma 3 4B IT (Q4_K_M)" }, "Phi-4-mini-Instruct (Q4_K_M)": { "repo_id": "unsloth/Phi-4-mini-instruct-GGUF", "filename": "Phi-4-mini-instruct-Q4_K_M.gguf", "description": "Phi-4 Mini Instruct (Q4_K_M)" }, "Meta-Llama-3.1-8B-Instruct (Q2_K)": { "repo_id": "MaziyarPanahi/Meta-Llama-3.1-8B-Instruct-GGUF", "filename": "Meta-Llama-3.1-8B-Instruct.Q2_K.gguf", "description": "Meta-Llama-3.1-8B-Instruct (Q2_K)" }, "DeepSeek-R1-Distill-Llama-8B (Q2_K)": { "repo_id": "unsloth/DeepSeek-R1-Distill-Llama-8B-GGUF", "filename": "DeepSeek-R1-Distill-Llama-8B-Q2_K.gguf", "description": "DeepSeek-R1-Distill-Llama-8B (Q2_K)" }, "Mistral-7B-Instruct-v0.3 (IQ3_XS)": { "repo_id": "MaziyarPanahi/Mistral-7B-Instruct-v0.3-GGUF", "filename": "Mistral-7B-Instruct-v0.3.IQ3_XS.gguf", "description": "Mistral-7B-Instruct-v0.3 (IQ3_XS)" }, "Qwen2.5-Coder-7B-Instruct (Q2_K)": { "repo_id": "Qwen/Qwen2.5-Coder-7B-Instruct-GGUF", "filename": "qwen2.5-coder-7b-instruct-q2_k.gguf", "description": "Qwen2.5-Coder-7B-Instruct (Q2_K)" }, } # ----- Sidebar settings ----- with st.sidebar: st.header("⚙️ Settings") selected_model_name = st.selectbox("Select Model", list(MODELS.keys())) system_prompt_base = st.text_area("System Prompt", value="You are a helpful assistant.", height=80) max_tokens = st.slider("Max tokens", 64, 1024, 256, step=32) temperature = st.slider("Temperature", 0.1, 2.0, 0.7) top_k = st.slider("Top-K", 1, 100, 40) top_p = st.slider("Top-P", 0.1, 1.0, 0.95) repeat_penalty = st.slider("Repetition Penalty", 1.0, 2.0, 1.1) enable_search = st.checkbox("Enable Web Search", value=False) # ---- Define selected model and manage its download/load ---- selected_model = MODELS[selected_model_name] model_path = os.path.join("models", selected_model["filename"]) os.makedirs("models", exist_ok=True) def try_load_model(path): try: return Llama( model_path=path, n_ctx=2048, # Reduced context window n_threads=2, n_threads_batch=1, n_batch=256, n_gpu_layers=0, use_mlock=True, use_mmap=True, verbose=False, logits_all=True, draft_model=LlamaPromptLookupDecoding(num_pred_tokens=2), ) except Exception as e: return str(e) def download_model(): with st.spinner(f"Downloading {selected_model['filename']}..."): hf_hub_download( repo_id=selected_model["repo_id"], filename=selected_model["filename"], local_dir="./models", local_dir_use_symlinks=False, ) def validate_or_download_model(): if not os.path.exists(model_path): if shutil.disk_usage(".").free < REQUIRED_SPACE_BYTES: st.info("Insufficient storage. Consider cleaning up old models.") download_model() result = try_load_model(model_path) if isinstance(result, str): st.warning(f"Initial load failed: {result}\nRe-downloading...") try: os.remove(model_path) except Exception: pass download_model() result = try_load_model(model_path) if isinstance(result, str): st.error(f"Model still failed after re-download: {result}") st.stop() return result if st.session_state.model_name != selected_model_name: if st.session_state.llm is not None: del st.session_state.llm gc.collect() st.session_state.llm = validate_or_download_model() st.session_state.model_name = selected_model_name llm = st.session_state.llm # ---- Display title and existing chat history ---- st.title(f"🧠 {selected_model['description']} (Streamlit + GGUF)") st.caption(f"Powered by `llama.cpp` | Model: {selected_model['filename']}") for chat in st.session_state.chat_history: with st.chat_message(chat["role"]): st.markdown(chat["content"]) # ---- Chat input and processing ---- user_input = st.chat_input("Ask something...") if user_input: if st.session_state.pending_response: st.warning("Please wait for the assistant to finish responding.") else: # Display user input and update chat history with st.chat_message("user"): st.markdown(user_input) st.session_state.chat_history.append({"role": "user", "content": user_input}) st.session_state.pending_response = True # Optionally retrieve extra context retrieved_context = retrieve_context(user_input, max_results=6, max_chars_per_result=600) if enable_search else "" st.sidebar.markdown("### Retrieved Context" if enable_search else "Web Search Disabled") st.sidebar.text(retrieved_context or "No context found.") # Build augmented query if enable_search and retrieved_context: augmented_user_input = ( f"{system_prompt_base.strip()}\n\n" f"Use the following recent web search context to help answer the query:\n\n" f"{retrieved_context}\n\n" f"User Query: {user_input}" ) else: augmented_user_input = f"{system_prompt_base.strip()}\n\nUser Query: {user_input}" # Limit conversation history (last 2 pairs) MAX_TURNS = 2 trimmed_history = st.session_state.chat_history[-(MAX_TURNS * 2):] if trimmed_history and trimmed_history[-1]["role"] == "user": messages = trimmed_history[:-1] + [{"role": "user", "content": augmented_user_input}] else: messages = trimmed_history + [{"role": "user", "content": augmented_user_input}] # ---- Set up a placeholder for the response and queue for streaming tokens ---- visible_placeholder = st.empty() response_queue = queue.Queue() # Function to stream LLM response and push incremental updates into the queue def stream_response(msgs, max_tokens, temp, topk, topp, repeat_penalty): final_text = "" try: stream = llm.create_chat_completion( messages=msgs, max_tokens=max_tokens, temperature=temp, top_k=topk, top_p=topp, repeat_penalty=repeat_penalty, stream=True, ) for chunk in stream: if "choices" in chunk: delta = chunk["choices"][0]["delta"].get("content", "") final_text += delta response_queue.put(delta) if chunk["choices"][0].get("finish_reason", ""): break except Exception as e: response_queue.put(f"\nError: {e}") response_queue.put(None) # Signal completion # Start streaming in a separate thread stream_thread = threading.Thread( target=stream_response, args=(messages, max_tokens, temperature, top_k, top_p, repeat_penalty), daemon=True ) stream_thread.start() # Poll the queue in the main thread for up to 5 seconds final_response = "" timeout = 300 # seconds start_time = time.time() while True: try: update = response_queue.get(timeout=0.1) if update is None: break final_response += update visible_response = re.sub(r".*?", "", final_response, flags=re.DOTALL) visible_response = re.sub(r".*$", "", visible_response, flags=re.DOTALL) visible_placeholder.markdown(visible_response) except queue.Empty: if time.time() - start_time > timeout: st.error("Response generation timed out.") break st.session_state.chat_history.append({"role": "assistant", "content": final_response}) st.session_state.pending_response = False gc.collect()