File size: 10,803 Bytes
0ff6c39
 
 
4e60755
 
 
0ff6c39
9d3ca6c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4522453
 
4e60755
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d3ca6c
cd26609
4e60755
 
 
 
 
 
 
 
 
 
cd26609
 
 
 
 
0813164
cd26609
0813164
 
cd26609
37ee1f3
cd26609
37ee1f3
 
cd26609
d554072
 
 
afa19a3
d554072
 
 
 
afa19a3
d554072
 
 
 
afa19a3
d554072
 
 
 
afa19a3
d554072
cd26609
 
9d3ca6c
cd26609
 
 
4e60755
 
cd26609
 
 
 
 
4e60755
 
 
afa19a3
 
 
4522453
 
afa19a3
 
 
 
4e60755
cd26609
 
 
4e60755
37ee1f3
 
4e60755
afa19a3
 
4522453
 
4e60755
 
 
 
4522453
 
 
 
 
afa19a3
 
 
4e60755
 
 
 
 
 
 
 
 
6e8312c
 
4522453
 
4e60755
6e8312c
afa19a3
 
 
6e8312c
 
4522453
6e8312c
 
afa19a3
 
 
 
 
 
3e4847c
4e60755
 
 
 
 
 
 
 
 
 
9d3ca6c
afa19a3
 
 
 
 
 
 
 
 
9d3ca6c
afa19a3
 
 
4e60755
4522453
 
 
 
4e60755
afa19a3
 
 
4522453
 
afa19a3
4e60755
afa19a3
 
 
 
4522453
 
4e60755
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4522453
4e60755
afa19a3
4e60755
afa19a3
4522453
afa19a3
 
 
 
 
 
 
 
 
 
9d3ca6c
afa19a3
 
 
 
4e60755
4522453
9d3ca6c
4522453
9d3ca6c
4e60755
4522453
4e60755
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
import streamlit as st
from llama_cpp import Llama
from huggingface_hub import hf_hub_download
import os, gc, shutil, re
from itertools import islice
from duckduckgo_search import DDGS  # Latest class-based interface :contentReference[oaicite:0]{index=0}

# ----- Custom CSS for pretty formatting of internal reasoning -----
CUSTOM_CSS = """
<style>
/* Styles for the internal reasoning bullet list */
ul.think-list {
    margin: 0.5em 0 1em 1.5em;
    padding: 0;
    list-style-type: disc;
}
ul.think-list li {
    margin-bottom: 0.5em;
}

/* Container style for the "in progress" internal reasoning */
.chat-assistant {
    background-color: #f9f9f9;
    padding: 1em;
    border-radius: 5px;
    margin-bottom: 1em;
}
</style>
"""
st.markdown(CUSTOM_CSS, unsafe_allow_html=True)

# ----- Set a threshold for required free storage (in bytes) -----
REQUIRED_SPACE_BYTES = 5 * 1024 ** 3  # 5 GB

# ----- Function to perform DuckDuckGo search and retrieve concise context -----
def retrieve_context(query, max_results=2, max_chars_per_result=150):
    """
    Query DuckDuckGo for the given search query and return a concatenated context string.
    Uses the DDGS().text() generator (with region, safesearch, and timelimit parameters)
    and limits the results using islice. Each result's title and snippet are combined into context.
    """
    try:
        with DDGS() as ddgs:
            results_gen = ddgs.text(query, region="wt-wt", safesearch="off", timelimit="y")
            results = list(islice(results_gen, max_results))
            context = ""
            if results:
                for i, result in enumerate(results, start=1):
                    title = result.get("title", "No Title")
                    snippet = result.get("body", "")[:max_chars_per_result]
                    context += f"Result {i}:\nTitle: {title}\nSnippet: {snippet}\n\n"
            return context.strip()
    except Exception as e:
        st.error(f"Error during retrieval: {e}")
        return ""

# ----- Available models -----
MODELS = {
    "Qwen2.5-0.5B-Instruct (Q4_K_M)": {
        "repo_id": "Qwen/Qwen2.5-0.5B-Instruct-GGUF",
        "filename": "qwen2.5-0.5b-instruct-q4_k_m.gguf",
        "description": "Qwen2.5-0.5B-Instruct (Q4_K_M)"
    },
    "Gemma-3.1B-it (Q4_K_M)": {
        "repo_id": "unsloth/gemma-3-1b-it-GGUF",
        "filename": "gemma-3-1b-it-Q4_K_M.gguf",
        "description": "Gemma-3.1B-it (Q4_K_M)"
    },
    "Qwen2.5-7B-Instruct (Q2_K)": {
        "repo_id": "Qwen/Qwen2.5-7B-Instruct-GGUF",
        "filename": "qwen2.5-7b-instruct-q2_k.gguf",
        "description": "Qwen2.5-7B Instruct (Q2_K)"
    },
    "Gemma-3-4B-IT (Q4_K_M)": {
        "repo_id": "unsloth/gemma-3-4b-it-GGUF",
        "filename": "gemma-3-4b-it-Q4_K_M.gguf",
        "description": "Gemma 3 4B IT (Q4_K_M)"
    },
    "Phi-4-mini-Instruct (Q4_K_M)": {
        "repo_id": "unsloth/Phi-4-mini-instruct-GGUF",
        "filename": "Phi-4-mini-instruct-Q4_K_M.gguf",
        "description": "Phi-4 Mini Instruct (Q4_K_M)"
    },
    "Meta-Llama-3.1-8B-Instruct (Q2_K)": {
        "repo_id": "MaziyarPanahi/Meta-Llama-3.1-8B-Instruct-GGUF",
        "filename": "Meta-Llama-3.1-8B-Instruct.Q2_K.gguf",
        "description": "Meta-Llama-3.1-8B-Instruct (Q2_K)"
    },
    "DeepSeek-R1-Distill-Llama-8B (Q2_K)": {
        "repo_id": "unsloth/DeepSeek-R1-Distill-Llama-8B-GGUF",
        "filename": "DeepSeek-R1-Distill-Llama-8B-Q2_K.gguf",
        "description": "DeepSeek-R1-Distill-Llama-8B (Q2_K)"
    },
    "Mistral-7B-Instruct-v0.3 (IQ3_XS)": {
        "repo_id": "MaziyarPanahi/Mistral-7B-Instruct-v0.3-GGUF",
        "filename": "Mistral-7B-Instruct-v0.3.IQ3_XS.gguf",
        "description": "Mistral-7B-Instruct-v0.3 (IQ3_XS)"
    },
    "Qwen2.5-Coder-7B-Instruct (Q2_K)": {
        "repo_id": "Qwen/Qwen2.5-Coder-7B-Instruct-GGUF",
        "filename": "qwen2.5-coder-7b-instruct-q2_k.gguf",
        "description": "Qwen2.5-Coder-7B-Instruct (Q2_K)"
    },
}

# ----- Sidebar settings -----
with st.sidebar:
    st.header("⚙️ Settings")
    selected_model_name = st.selectbox("Select Model", list(MODELS.keys()))
    system_prompt_base = st.text_area("System Prompt", value="You are a helpful assistant.", height=80)
    max_tokens = st.slider("Max tokens", 64, 1024, 256, step=32)  # Adjust for lower memory usage
    temperature = st.slider("Temperature", 0.1, 2.0, 0.7)
    top_k = st.slider("Top-K", 1, 100, 40)
    top_p = st.slider("Top-P", 0.1, 1.0, 0.95)
    repeat_penalty = st.slider("Repetition Penalty", 1.0, 2.0, 1.1)

    # Checkbox to enable the DuckDuckGo search feature (disabled by default)
    enable_search = st.checkbox("Enable Web Search", value=False)
    
    if st.button("📦 Show Disk Usage"):
        try:
            usage = shutil.disk_usage(".")
            used = usage.used / (1024 ** 3)
            free = usage.free / (1024 ** 3)
            st.info(f"Disk Used: {used:.2f} GB | Free: {free:.2f} GB")
        except Exception as e:
            st.error(f"Disk usage error: {e}")

# ----- Define selected model and path -----
selected_model = MODELS[selected_model_name]
model_path = os.path.join("models", selected_model["filename"])

# Ensure model directory exists
os.makedirs("models", exist_ok=True)

# ----- Helper functions for model management -----
def try_load_model(path):
    try:
        return Llama(
            model_path=path,
            n_ctx=512,           # Reduced context window to save memory
            n_threads=1,         # Fewer threads for resource-constrained environments
            n_threads_batch=1,
            n_batch=2,           # Lower batch size to conserve memory
            n_gpu_layers=0,
            use_mlock=False,
            use_mmap=True,
            verbose=False,
        )
    except Exception as e:
        return str(e)

def download_model():
    with st.spinner(f"Downloading {selected_model['filename']}..."):
        hf_hub_download(
            repo_id=selected_model["repo_id"],
            filename=selected_model["filename"],
            local_dir="./models",
            local_dir_use_symlinks=False,
        )

def validate_or_download_model():
    if not os.path.exists(model_path):
        free_space = shutil.disk_usage(".").free
        if free_space < REQUIRED_SPACE_BYTES:
            st.info("Insufficient storage. Consider cleaning up old models.")
        download_model()
    result = try_load_model(model_path)
    if isinstance(result, str):
        st.warning(f"Initial load failed: {result}\nAttempting re-download...")
        try:
            os.remove(model_path)
        except Exception:
            pass
        download_model()
        result = try_load_model(model_path)
        if isinstance(result, str):
            st.error(f"Model still failed after re-download: {result}")
            st.stop()
        return result
    return result

# ----- Session state initialization -----
if "model_name" not in st.session_state:
    st.session_state.model_name = None
if "llm" not in st.session_state:
    st.session_state.llm = None
if "chat_history" not in st.session_state:
    st.session_state.chat_history = []
if "pending_response" not in st.session_state:
    st.session_state.pending_response = False

# ----- Load model if changed -----
if st.session_state.model_name != selected_model_name:
    if st.session_state.llm is not None:
        del st.session_state.llm
        gc.collect()
    st.session_state.llm = validate_or_download_model()
    st.session_state.model_name = selected_model_name

llm = st.session_state.llm

# ----- Display title and caption -----
st.title(f"🧠 {selected_model['description']} (Streamlit + GGUF)")
st.caption(f"Powered by `llama.cpp` | Model: {selected_model['filename']}")

# Render existing chat history
for chat in st.session_state.chat_history:
    with st.chat_message(chat["role"]):
        st.markdown(chat["content"])

# ----- Chat input and integrated RAG with memory optimizations -----
user_input = st.chat_input("Ask something...")

if user_input:
    if st.session_state.pending_response:
        st.warning("Please wait for the assistant to finish responding.")
    else:
        # Append the user query to chat history
        st.session_state.chat_history.append({"role": "user", "content": user_input})
        with st.chat_message("user"):
            st.markdown(user_input)

        st.session_state.pending_response = True

        # Only retrieve search context if search feature is enabled
        if enable_search:
            retrieved_context = retrieve_context(user_input, max_results=2, max_chars_per_result=150)
        else:
            retrieved_context = ""
        st.sidebar.markdown("### Retrieved Context" if enable_search else "Web Search Disabled")
        st.sidebar.text(retrieved_context or "No context found.")

        # Build an augmented system prompt that includes the retrieved context if available
        if retrieved_context:
            augmented_prompt = (
                "Use the following recent web search context to help answer the query:\n\n"
                f"{retrieved_context}\n\nUser Query: {user_input}"
            )
        else:
            augmented_prompt = f"User Query: {user_input}"
        full_system_prompt = system_prompt_base.strip() + "\n\n" + augmented_prompt

        # Limit conversation history to the last 2 turns
        MAX_TURNS = 2
        trimmed_history = st.session_state.chat_history[-(MAX_TURNS * 2):]
        messages = [{"role": "system", "content": full_system_prompt}] + trimmed_history

        # Generate response with the LLM in a streaming fashion
        with st.chat_message("assistant"):
            visible_placeholder = st.empty()
            full_response = ""
            stream = llm.create_chat_completion(
                messages=messages,
                max_tokens=max_tokens,
                temperature=temperature,
                top_k=top_k,
                top_p=top_p,
                repeat_penalty=repeat_penalty,
                stream=True,
            )

            for chunk in stream:
                if "choices" in chunk:
                    delta = chunk["choices"][0]["delta"].get("content", "")
                    full_response += delta
                    # Clean internal reasoning markers before display
                    visible_response = re.sub(r"<think>.*?</think>", "", full_response, flags=re.DOTALL)
                    visible_response = re.sub(r"<think>.*$", "", visible_response, flags=re.DOTALL)
                    visible_placeholder.markdown(visible_response)

        st.session_state.chat_history.append({"role": "assistant", "content": full_response})
        st.session_state.pending_response = False
        gc.collect()  # Trigger garbage collection to free memory