Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,803 Bytes
0ff6c39 4e60755 0ff6c39 9d3ca6c 4522453 4e60755 9d3ca6c cd26609 4e60755 cd26609 0813164 cd26609 0813164 cd26609 37ee1f3 cd26609 37ee1f3 cd26609 d554072 afa19a3 d554072 afa19a3 d554072 afa19a3 d554072 afa19a3 d554072 cd26609 9d3ca6c cd26609 4e60755 cd26609 4e60755 afa19a3 4522453 afa19a3 4e60755 cd26609 4e60755 37ee1f3 4e60755 afa19a3 4522453 4e60755 4522453 afa19a3 4e60755 6e8312c 4522453 4e60755 6e8312c afa19a3 6e8312c 4522453 6e8312c afa19a3 3e4847c 4e60755 9d3ca6c afa19a3 9d3ca6c afa19a3 4e60755 4522453 4e60755 afa19a3 4522453 afa19a3 4e60755 afa19a3 4522453 4e60755 4522453 4e60755 afa19a3 4e60755 afa19a3 4522453 afa19a3 9d3ca6c afa19a3 4e60755 4522453 9d3ca6c 4522453 9d3ca6c 4e60755 4522453 4e60755 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
import streamlit as st
from llama_cpp import Llama
from huggingface_hub import hf_hub_download
import os, gc, shutil, re
from itertools import islice
from duckduckgo_search import DDGS # Latest class-based interface :contentReference[oaicite:0]{index=0}
# ----- Custom CSS for pretty formatting of internal reasoning -----
CUSTOM_CSS = """
<style>
/* Styles for the internal reasoning bullet list */
ul.think-list {
margin: 0.5em 0 1em 1.5em;
padding: 0;
list-style-type: disc;
}
ul.think-list li {
margin-bottom: 0.5em;
}
/* Container style for the "in progress" internal reasoning */
.chat-assistant {
background-color: #f9f9f9;
padding: 1em;
border-radius: 5px;
margin-bottom: 1em;
}
</style>
"""
st.markdown(CUSTOM_CSS, unsafe_allow_html=True)
# ----- Set a threshold for required free storage (in bytes) -----
REQUIRED_SPACE_BYTES = 5 * 1024 ** 3 # 5 GB
# ----- Function to perform DuckDuckGo search and retrieve concise context -----
def retrieve_context(query, max_results=2, max_chars_per_result=150):
"""
Query DuckDuckGo for the given search query and return a concatenated context string.
Uses the DDGS().text() generator (with region, safesearch, and timelimit parameters)
and limits the results using islice. Each result's title and snippet are combined into context.
"""
try:
with DDGS() as ddgs:
results_gen = ddgs.text(query, region="wt-wt", safesearch="off", timelimit="y")
results = list(islice(results_gen, max_results))
context = ""
if results:
for i, result in enumerate(results, start=1):
title = result.get("title", "No Title")
snippet = result.get("body", "")[:max_chars_per_result]
context += f"Result {i}:\nTitle: {title}\nSnippet: {snippet}\n\n"
return context.strip()
except Exception as e:
st.error(f"Error during retrieval: {e}")
return ""
# ----- Available models -----
MODELS = {
"Qwen2.5-0.5B-Instruct (Q4_K_M)": {
"repo_id": "Qwen/Qwen2.5-0.5B-Instruct-GGUF",
"filename": "qwen2.5-0.5b-instruct-q4_k_m.gguf",
"description": "Qwen2.5-0.5B-Instruct (Q4_K_M)"
},
"Gemma-3.1B-it (Q4_K_M)": {
"repo_id": "unsloth/gemma-3-1b-it-GGUF",
"filename": "gemma-3-1b-it-Q4_K_M.gguf",
"description": "Gemma-3.1B-it (Q4_K_M)"
},
"Qwen2.5-7B-Instruct (Q2_K)": {
"repo_id": "Qwen/Qwen2.5-7B-Instruct-GGUF",
"filename": "qwen2.5-7b-instruct-q2_k.gguf",
"description": "Qwen2.5-7B Instruct (Q2_K)"
},
"Gemma-3-4B-IT (Q4_K_M)": {
"repo_id": "unsloth/gemma-3-4b-it-GGUF",
"filename": "gemma-3-4b-it-Q4_K_M.gguf",
"description": "Gemma 3 4B IT (Q4_K_M)"
},
"Phi-4-mini-Instruct (Q4_K_M)": {
"repo_id": "unsloth/Phi-4-mini-instruct-GGUF",
"filename": "Phi-4-mini-instruct-Q4_K_M.gguf",
"description": "Phi-4 Mini Instruct (Q4_K_M)"
},
"Meta-Llama-3.1-8B-Instruct (Q2_K)": {
"repo_id": "MaziyarPanahi/Meta-Llama-3.1-8B-Instruct-GGUF",
"filename": "Meta-Llama-3.1-8B-Instruct.Q2_K.gguf",
"description": "Meta-Llama-3.1-8B-Instruct (Q2_K)"
},
"DeepSeek-R1-Distill-Llama-8B (Q2_K)": {
"repo_id": "unsloth/DeepSeek-R1-Distill-Llama-8B-GGUF",
"filename": "DeepSeek-R1-Distill-Llama-8B-Q2_K.gguf",
"description": "DeepSeek-R1-Distill-Llama-8B (Q2_K)"
},
"Mistral-7B-Instruct-v0.3 (IQ3_XS)": {
"repo_id": "MaziyarPanahi/Mistral-7B-Instruct-v0.3-GGUF",
"filename": "Mistral-7B-Instruct-v0.3.IQ3_XS.gguf",
"description": "Mistral-7B-Instruct-v0.3 (IQ3_XS)"
},
"Qwen2.5-Coder-7B-Instruct (Q2_K)": {
"repo_id": "Qwen/Qwen2.5-Coder-7B-Instruct-GGUF",
"filename": "qwen2.5-coder-7b-instruct-q2_k.gguf",
"description": "Qwen2.5-Coder-7B-Instruct (Q2_K)"
},
}
# ----- Sidebar settings -----
with st.sidebar:
st.header("⚙️ Settings")
selected_model_name = st.selectbox("Select Model", list(MODELS.keys()))
system_prompt_base = st.text_area("System Prompt", value="You are a helpful assistant.", height=80)
max_tokens = st.slider("Max tokens", 64, 1024, 256, step=32) # Adjust for lower memory usage
temperature = st.slider("Temperature", 0.1, 2.0, 0.7)
top_k = st.slider("Top-K", 1, 100, 40)
top_p = st.slider("Top-P", 0.1, 1.0, 0.95)
repeat_penalty = st.slider("Repetition Penalty", 1.0, 2.0, 1.1)
# Checkbox to enable the DuckDuckGo search feature (disabled by default)
enable_search = st.checkbox("Enable Web Search", value=False)
if st.button("📦 Show Disk Usage"):
try:
usage = shutil.disk_usage(".")
used = usage.used / (1024 ** 3)
free = usage.free / (1024 ** 3)
st.info(f"Disk Used: {used:.2f} GB | Free: {free:.2f} GB")
except Exception as e:
st.error(f"Disk usage error: {e}")
# ----- Define selected model and path -----
selected_model = MODELS[selected_model_name]
model_path = os.path.join("models", selected_model["filename"])
# Ensure model directory exists
os.makedirs("models", exist_ok=True)
# ----- Helper functions for model management -----
def try_load_model(path):
try:
return Llama(
model_path=path,
n_ctx=512, # Reduced context window to save memory
n_threads=1, # Fewer threads for resource-constrained environments
n_threads_batch=1,
n_batch=2, # Lower batch size to conserve memory
n_gpu_layers=0,
use_mlock=False,
use_mmap=True,
verbose=False,
)
except Exception as e:
return str(e)
def download_model():
with st.spinner(f"Downloading {selected_model['filename']}..."):
hf_hub_download(
repo_id=selected_model["repo_id"],
filename=selected_model["filename"],
local_dir="./models",
local_dir_use_symlinks=False,
)
def validate_or_download_model():
if not os.path.exists(model_path):
free_space = shutil.disk_usage(".").free
if free_space < REQUIRED_SPACE_BYTES:
st.info("Insufficient storage. Consider cleaning up old models.")
download_model()
result = try_load_model(model_path)
if isinstance(result, str):
st.warning(f"Initial load failed: {result}\nAttempting re-download...")
try:
os.remove(model_path)
except Exception:
pass
download_model()
result = try_load_model(model_path)
if isinstance(result, str):
st.error(f"Model still failed after re-download: {result}")
st.stop()
return result
return result
# ----- Session state initialization -----
if "model_name" not in st.session_state:
st.session_state.model_name = None
if "llm" not in st.session_state:
st.session_state.llm = None
if "chat_history" not in st.session_state:
st.session_state.chat_history = []
if "pending_response" not in st.session_state:
st.session_state.pending_response = False
# ----- Load model if changed -----
if st.session_state.model_name != selected_model_name:
if st.session_state.llm is not None:
del st.session_state.llm
gc.collect()
st.session_state.llm = validate_or_download_model()
st.session_state.model_name = selected_model_name
llm = st.session_state.llm
# ----- Display title and caption -----
st.title(f"🧠 {selected_model['description']} (Streamlit + GGUF)")
st.caption(f"Powered by `llama.cpp` | Model: {selected_model['filename']}")
# Render existing chat history
for chat in st.session_state.chat_history:
with st.chat_message(chat["role"]):
st.markdown(chat["content"])
# ----- Chat input and integrated RAG with memory optimizations -----
user_input = st.chat_input("Ask something...")
if user_input:
if st.session_state.pending_response:
st.warning("Please wait for the assistant to finish responding.")
else:
# Append the user query to chat history
st.session_state.chat_history.append({"role": "user", "content": user_input})
with st.chat_message("user"):
st.markdown(user_input)
st.session_state.pending_response = True
# Only retrieve search context if search feature is enabled
if enable_search:
retrieved_context = retrieve_context(user_input, max_results=2, max_chars_per_result=150)
else:
retrieved_context = ""
st.sidebar.markdown("### Retrieved Context" if enable_search else "Web Search Disabled")
st.sidebar.text(retrieved_context or "No context found.")
# Build an augmented system prompt that includes the retrieved context if available
if retrieved_context:
augmented_prompt = (
"Use the following recent web search context to help answer the query:\n\n"
f"{retrieved_context}\n\nUser Query: {user_input}"
)
else:
augmented_prompt = f"User Query: {user_input}"
full_system_prompt = system_prompt_base.strip() + "\n\n" + augmented_prompt
# Limit conversation history to the last 2 turns
MAX_TURNS = 2
trimmed_history = st.session_state.chat_history[-(MAX_TURNS * 2):]
messages = [{"role": "system", "content": full_system_prompt}] + trimmed_history
# Generate response with the LLM in a streaming fashion
with st.chat_message("assistant"):
visible_placeholder = st.empty()
full_response = ""
stream = llm.create_chat_completion(
messages=messages,
max_tokens=max_tokens,
temperature=temperature,
top_k=top_k,
top_p=top_p,
repeat_penalty=repeat_penalty,
stream=True,
)
for chunk in stream:
if "choices" in chunk:
delta = chunk["choices"][0]["delta"].get("content", "")
full_response += delta
# Clean internal reasoning markers before display
visible_response = re.sub(r"<think>.*?</think>", "", full_response, flags=re.DOTALL)
visible_response = re.sub(r"<think>.*$", "", visible_response, flags=re.DOTALL)
visible_placeholder.markdown(visible_response)
st.session_state.chat_history.append({"role": "assistant", "content": full_response})
st.session_state.pending_response = False
gc.collect() # Trigger garbage collection to free memory
|