Deepseek / app.py
Leonydis137's picture
Update app.py
e02229b verified
raw
history blame
27.1 kB
# app.py - DeepSeek Hexa-Agent Discussion Platform (Free Version)
import gradio as gr
import requests
import threading
import time
import numpy as np
import faiss
import os
import pickle
from datetime import datetime
import re
import json
import matplotlib.pyplot as plt
import networkx as nx
from reportlab.lib.pagesizes import letter
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer
from reportlab.lib.styles import getSampleStyleSheet
from functools import lru_cache
from sentence_transformers import SentenceTransformer
# === CONFIG ===
EMBEDDING_MODEL = "all-MiniLM-L6-v2" # Local embedding model
CHAT_MODEL = "HuggingFaceH4/zephyr-7b-beta" # Free model via Hugging Face API
MEMORY_FILE = "memory.pkl"
INDEX_FILE = "memory.index"
HF_API_TOKEN = os.environ.get("HF_API_TOKEN", "") # Optional for higher rate limits
# Initialize local embedding model
embedding_model = SentenceTransformer(EMBEDDING_MODEL)
# === EMBEDDING UTILS ===
@lru_cache(maxsize=500)
def get_embedding(text):
"""Local embedding function"""
return embedding_model.encode(text)
def cosine_similarity(vec1, vec2):
vec1 = np.array(vec1)
vec2 = np.array(vec2)
return np.dot(vec1, vec2) / (np.linalg.norm(vec1) * np.linalg.norm(vec2))
# === MEMORY INITIALIZATION ===
memory_data = []
try:
memory_index = faiss.read_index(INDEX_FILE)
with open(MEMORY_FILE, "rb") as f:
memory_data = pickle.load(f)
except:
memory_index = faiss.IndexFlatL2(384) # 384 dimensions for MiniLM
# === AGENT SYSTEM PROMPTS ===
AGENT_A_PROMPT = """You are the Discussion Initiator. Your role:
1. Introduce complex topics requiring multidisciplinary perspectives
2. Frame debates exploring tensions between values, ethics, and progress
3. Challenge assumptions while maintaining intellectual humility
4. Connect concepts across domains (science, ethics, policy, technology)
5. Elevate discussions beyond surface-level analysis"""
AGENT_B_PROMPT = """You are the Critical Responder. Your role:
1. Provide counterpoints with evidence-based reasoning
2. Identify logical fallacies and cognitive biases in arguments
3. Analyze implications at different scales (individual, societal, global)
4. Consider second and third-order consequences
5. Balance idealism with practical constraints"""
OVERSEER_PROMPT = """You are the Depth Guardian. Your role:
1. Ensure discussions maintain intellectual rigor
2. Intervene when conversations become superficial or repetitive
3. Highlight unexamined assumptions and blind spots
4. Introduce relevant frameworks (systems thinking, ethical paradigms)
5. Prompt consideration of marginalized perspectives
6. Synthesize key tensions and paradoxes"""
OUTSIDER_PROMPT = """You are the Cross-Disciplinary Provocateur. Your role:
1. Introduce radical perspectives from unrelated fields
2. Challenge conventional wisdom with contrarian viewpoints
3. Surface historical precedents and analogies
4. Propose unconventional solutions to complex problems
5. Highlight overlooked connections and systemic relationships
6. Question the framing of the discussion itself"""
CULTURAL_LENS_PROMPT = """You are the Cultural Perspective. Your role:
1. Provide viewpoints from diverse global cultures (Eastern, Western, Indigenous, African, etc.)
2. Highlight how cultural values shape perspectives on the topic
3. Identify cultural biases in arguments and assumptions
4. Share traditions and practices relevant to the discussion
5. Suggest culturally inclusive approaches to solutions
6. Bridge cultural divides through nuanced understanding
7. Consider post-colonial and decolonial perspectives"""
JUDGE_PROMPT = """You are the Impartial Judge. Your role:
1. Periodically review the discussion and provide balanced rulings
2. Identify areas of agreement and unresolved tensions
3. Evaluate the strength of arguments from different perspectives
4. Highlight the most compelling insights and critical flaws
5. Suggest pathways toward resolution or further inquiry
6. Deliver rulings with clear justification and constructive guidance
7. Maintain objectivity while acknowledging valid points from all sides
8. Consider ethical implications and practical feasibility"""
# === GLOBAL STATE ===
conversation = []
turn_count = 0
auto_mode = False
current_topic = ""
last_ruling_turn = 0
agent_params = {
"Initiator": {"creativity": 0.7, "criticality": 0.5},
"Responder": {"creativity": 0.5, "criticality": 0.8},
"Guardian": {"creativity": 0.6, "criticality": 0.9},
"Provocateur": {"creativity": 0.9, "criticality": 0.7},
"Cultural": {"creativity": 0.7, "criticality": 0.6},
"Judge": {"creativity": 0.4, "criticality": 0.9}
}
# === FREE CHAT COMPLETION API ===
def safe_chat_completion(system, messages, temperature=0.7):
"""Use free Hugging Face Inference API"""
try:
# Format messages for Hugging Face API
formatted = [{"role": "system", "content": system}]
formatted.extend(messages)
# Prepare payload
payload = {
"inputs": formatted,
"parameters": {
"max_new_tokens": 300,
"temperature": temperature,
"return_full_text": False
}
}
headers = {"Authorization": f"Bearer {HF_API_TOKEN}"} if HF_API_TOKEN else {}
response = requests.post(
f"https://api-inference.huggingface.co/models/{CHAT_MODEL}",
json=payload,
headers=headers,
timeout=60
)
if response.status_code == 200:
return response.json()[0]['generated_text'].strip()
elif response.status_code == 503: # Model loading
time.sleep(15)
return safe_chat_completion(system, messages, temperature)
else:
return f"⚠️ API Error: {response.text}"
except Exception as e:
return f"⚠️ System Error: {str(e)}"
# === MEMORY MANAGEMENT ===
def embed_and_store(text, agent=None):
try:
vec = get_embedding(text)
memory_index.add(np.array([vec], dtype='float32'))
memory_data.append({
"text": text,
"timestamp": datetime.now().isoformat(),
"agent": agent or "system",
"topic": current_topic
})
if len(memory_data) % 5 == 0:
with open(MEMORY_FILE, "wb") as f:
pickle.dump(memory_data, f)
faiss.write_index(memory_index, INDEX_FILE)
except Exception as e:
print(f"Memory Error: {str(e)}")
def retrieve_relevant_memory(query, k=3):
"""Retrieve relevant past discussions"""
try:
query_embedding = get_embedding(query)
distances, indices = memory_index.search(np.array([query_embedding], dtype='float32'), k)
relevant = []
for i, idx in enumerate(indices[0]):
if idx < len(memory_data) and idx >= 0:
relevant.append({
"text": memory_data[idx]['text'][:200] + "...",
"topic": memory_data[idx].get('topic', 'Unknown'),
"agent": memory_data[idx].get('agent', 'Unknown'),
"similarity": 1 - distances[0][i] # Convert distance to similarity
})
return relevant
except Exception as e:
print(f"Memory retrieval error: {str(e)}")
return []
# ... [Rest of the functions remain the same as previous implementation] ...
# Keep all the functions from the previous implementation except:
# - safe_chat_completion (already replaced above)
# - get_embedding (already replaced above)
# ... [Keep all imports, config, and function definitions above] ...
# === GRADIO UI ===
with gr.Blocks(theme=gr.themes.Soft(), title="DeepSeek Discussion Platform") as demo:
gr.Markdown("# 🧠 Hexa-Agent Discussion System (Free Version)")
gr.Markdown("### Powered by Open-Source Models")
# State variables
conversation_state = gr.State([])
turn_count_state = gr.State(0)
current_topic_state = gr.State("")
last_ruling_turn_state = gr.State(0)
auto_mode_state = gr.State(False)
agent_params_state = gr.State(agent_params)
# Status panel
with gr.Row():
turn_counter = gr.Number(label="Turn Count", value=0, interactive=False)
topic_display = gr.Textbox(label="Current Topic", interactive=False, lines=2)
agent_status = gr.Textbox(label="Active Agents", value="💡 Initiator, 🔍 Responder", interactive=False)
# Tabbed interface
with gr.Tab("Live Discussion"):
convo_display = gr.HTML(
value="<div class='convo-container'>Discussion will appear here</div>",
elem_id="convo-display"
)
with gr.Row():
step_btn = gr.Button("▶️ Next Turn", variant="primary")
auto_btn = gr.Button("🔴 Auto: OFF", variant="secondary")
clear_btn = gr.Button("🔄 New Discussion", variant="stop")
topic_btn = gr.Button("🎲 Random Topic", variant="secondary")
ruling_btn = gr.Button("⚖️ Request Ruling", variant="primary")
with gr.Accordion("💬 Guide the Discussion", open=False):
topic_input = gr.Textbox(label="Set Custom Topic", placeholder="e.g., Ethics of AGI in cultural contexts...")
with gr.Row():
qbox = gr.Textbox(label="Ask the Depth Guardian", placeholder="What perspectives are missing?")
ruling_qbox = gr.Textbox(label="Specific Question for Judge", placeholder="What should be our guiding principle?")
with gr.Row():
overseer_out = gr.Textbox(label="Depth Guardian Response", interactive=False)
judge_out = gr.Textbox(label="Judge's Response", interactive=False)
# === COMPLETE IMPLEMENTATION ===
def overseer_respond(question, conversation, current_topic):
"""Get response from Depth Guardian"""
context = f"Current Topic: {current_topic}\n\n" if current_topic else ""
context += "Conversation History:\n"
for msg in conversation[-5:]:
context += f"- {msg['agent']}: {msg['text']}\n"
response = safe_chat_completion(
system=OVERSEER_PROMPT,
messages=[{"role": "user", "content": f"{context}\nQuestion: {question}"}],
temperature=0.8
)
embed_and_store(response, "Guardian")
return response
def ask_judge(question, conversation, current_topic):
"""Get ruling from Judge"""
context = f"Topic: {current_topic}\n\n" if current_topic else ""
context += "Recent Discussion:\n"
for msg in conversation[-5:]:
context += f"- {msg['agent']}: {msg['text']}\n"
response = safe_chat_completion(
system=JUDGE_PROMPT,
messages=[{"role": "user", "content": f"{context}\nSpecific Question: {question}"}],
temperature=0.6
)
def step(topic_input, conversation, turn_count, current_topic, last_ruling_turn, agent_params):
"""Advance the discussion by one turn"""
# Remove global declarations - we'll use the parameters directly
# Set topic on first turn
if turn_count == 0:
if topic_input.strip():
current_topic = topic_input.strip()
else:
current_topic = "Ethical Implications of Advanced AI Systems"
# Determine which agent speaks
agent_sequence = ["Initiator", "Responder", "Guardian", "Provocateur", "Cultural"]
agent_index = turn_count % len(agent_sequence)
agent_name = agent_sequence[agent_index]
# Special handling for Judge
judge_interval = 5
if turn_count - last_ruling_turn >= judge_interval and turn_count > 0:
agent_name = "Judge"
# Get system prompt and temperature
prompts = {
"Initiator": AGENT_A_PROMPT,
"Responder": AGENT_B_PROMPT,
"Guardian": OVERSEER_PROMPT,
"Provocateur": OUTSIDER_PROMPT,
"Cultural": CULTURAL_LENS_PROMPT,
"Judge": JUDGE_PROMPT
}
temperature = agent_params[agent_name]["creativity"]
# Prepare context
context = f"Current Topic: {current_topic}\n\nDiscussion History:\n"
for msg in conversation[-5:]:
context += f"{msg['agent']}: {msg['text']}\n\n"
# Generate response
response = safe_chat_completion(
system=prompts[agent_name],
messages=[{"role": "user", "content": context}],
temperature=temperature
)
# Create message entry
new_entry = {
"agent": agent_name,
"text": response,
"turn": turn_count + 1
}
# Update state
updated_conversation = conversation + [new_entry]
new_turn_count = turn_count + 1
new_last_ruling_turn = new_turn_count if agent_name == "Judge" else last_ruling_turn
# Update memory
embed_and_store(response, agent_name, current_topic) # Pass current_topic here
# Format HTML output
html_output = format_conversation_html(updated_conversation)
# Get agent-specific displays
intervention = get_last_by_agent(updated_conversation, "Guardian")
outsider = get_last_by_agent(updated_conversation, "Provocateur")
cultural = get_last_by_agent(updated_conversation, "Cultural")
judge = get_last_by_agent(updated_conversation, "Judge")
# Prepare agent status
active_agents = " | ".join([f"{agent}: {entry['text'][:30]}..." for agent, entry in zip(
["Initiator", "Responder", "Guardian", "Provocateur", "Cultural", "Judge"],
[new_entry] * 6 # Simplified for demo
)])
return (
html_output,
intervention,
outsider,
cultural,
judge,
current_topic,
new_turn_count,
active_agents,
updated_conversation,
new_turn_count,
current_topic,
new_last_ruling_turn,
agent_params
)
# Update embed_and_store to accept topic as parameter
def embed_and_store(text, agent=None, topic=""):
"""Store text with associated topic"""
try:
vec = get_embedding(text)
memory_index.add(np.array([vec], dtype='float32'))
memory_data.append({
"text": text,
"timestamp": datetime.now().isoformat(),
"agent": agent or "system",
"topic": topic
})
if len(memory_data) % 5 == 0:
with open(MEMORY_FILE, "wb") as f:
pickle.dump(memory_data, f)
faiss.write_index(memory_index, INDEX_FILE)
except Exception as e:
print(f"Memory Error: {str(e)}")
# ... [Rest of the functions remain unchanged] ...
def get_last_by_agent(conversation, agent_name):
"""Get last message from specific agent"""
for msg in reversed(conversation):
if msg["agent"] == agent_name:
return msg["text"]
return "No message yet"
def format_conversation_html(conversation):
"""Format conversation as HTML"""
html = "<div class='convo-container'>"
for msg in conversation:
agent = msg["agent"]
color_map = {
"Initiator": "#e6f7ff",
"Responder": "#f6ffed",
"Guardian": "#fff7e6",
"Provocateur": "#f9e6ff",
"Cultural": "#e6ffed",
"Judge": "#f0f0f0",
"User": "#f0f0f0"
}
color = color_map.get(agent, "#ffffff")
html += f"""
<div style='background:{color}; padding:10px; margin:10px; border-radius:5px;'>
<b>{agent}:</b> {msg['text']}
</div>
"""
html += "</div>"
return html
def toggle_auto(auto_mode):
"""Toggle auto-advance mode"""
new_mode = not auto_mode
return ("🟢 Auto: ON" if new_mode else "🔴 Auto: OFF", new_mode)
def clear_convo():
"""Reset conversation"""
global conversation, turn_count, current_topic, last_ruling_turn
conversation = []
turn_count = 0
current_topic = ""
last_ruling_turn = 0
return (
format_conversation_html([]),
"",
"",
"",
"",
"",
0,
"💡 Initiator, 🔍 Responder",
[],
0,
"",
0,
"",
""
)
def new_topic(conversation, turn_count, current_topic):
"""Generate a new discussion topic"""
# In a real implementation, this would call an LLM to generate a topic
topics = [
"The Ethics of Genetic Engineering in Humans",
"Universal Basic Income in the Age of Automation",
"Cultural Impacts of Global AI Deployment",
"Privacy vs Security in Digital Societies",
"The Future of Human-AI Collaboration"
]
new_topic = np.random.choice(topics)
return (
format_conversation_html([]),
new_topic,
0,
[],
0,
new_topic
)
def request_ruling(conversation, current_topic, turn_count, last_ruling_turn):
"""Request a ruling from the Judge"""
context = f"Topic: {current_topic}\n\nDiscussion Summary:\n"
for msg in conversation[-5:]:
context += f"- {msg['agent']}: {msg['text']}\n"
response = safe_chat_completion(
system=JUDGE_PROMPT,
messages=[{"role": "user", "content": f"{context}\nPlease provide a comprehensive ruling."}],
temperature=0.5
)
new_entry = {
"agent": "Judge",
"text": response,
"turn": turn_count
}
updated_conversation = conversation + [new_entry]
return response, updated_conversation, turn_count
def run_analysis(conversation):
"""Run basic analysis (simplified for free version)"""
# Sentiment analysis placeholder
sentiments = ["Positive", "Neutral", "Negative"]
sentiment_result = np.random.choice(sentiments, p=[0.4, 0.4, 0.2])
# Topic extraction placeholder
topics = ["AI Ethics", "Policy", "Cultural Impact", "Technology", "Future Scenarios"]
topic_result = ", ".join(np.random.choice(topics, 3, replace=False))
# Agent participation plot
agents = [msg["agent"] for msg in conversation]
if agents:
agent_counts = {agent: agents.count(agent) for agent in set(agents)}
plt.figure(figsize=(8, 4))
plt.bar(agent_counts.keys(), agent_counts.values())
plt.title("Agent Participation")
plt.ylabel("Number of Messages")
plt.tight_layout()
plt.savefig("agent_plot.png")
plot_path = "agent_plot.png"
else:
plot_path = None
return (
f"Overall Sentiment: {sentiment_result}",
f"Key Topics: {topic_result}",
plot_path
)
def generate_knowledge_graph(conversation):
"""Generate a simple knowledge graph (placeholder)"""
G = nx.DiGraph()
entities = ["AI", "Ethics", "Society", "Technology", "Future"]
for i, e1 in enumerate(entities):
for j, e2 in enumerate(entities):
if i != j and np.random.random() > 0.7:
G.add_edge(e1, e2, weight=np.random.random())
plt.figure(figsize=(10, 8))
pos = nx.spring_layout(G)
nx.draw(G, pos, with_labels=True, node_size=2000,
node_color="skyblue", font_size=10,
edge_color="gray", width=1.5)
plt.title("Knowledge Graph")
plt.savefig("knowledge_graph.png")
return "knowledge_graph.png"
def export_handler(format_radio, conversation, current_topic, turn_count):
"""Export conversation in various formats"""
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
if format_radio == "txt":
filename = f"discussion_{timestamp}.txt"
with open(filename, "w") as f:
f.write(f"Topic: {current_topic}\nTurns: {turn_count}\n\n")
for msg in conversation:
f.write(f"{msg['agent']} (Turn {msg.get('turn', 'N/A')}):\n{msg['text']}\n\n")
return filename
elif format_radio == "pdf":
filename = f"discussion_{timestamp}.pdf"
doc = SimpleDocTemplate(filename, pagesize=letter)
styles = getSampleStyleSheet()
story = []
story.append(Paragraph(f"Discussion: {current_topic}", styles["Title"]))
story.append(Paragraph(f"Turns: {turn_count}", styles["Normal"]))
story.append(Spacer(1, 12))
for msg in conversation:
agent_text = f"<b>{msg['agent']}</b> (Turn {msg.get('turn', 'N/A')}):"
story.append(Paragraph(agent_text, styles["Normal"]))
story.append(Paragraph(msg["text"], styles["BodyText"]))
story.append(Spacer(1, 12))
doc.build(story)
return filename
elif format_radio == "json":
filename = f"discussion_{timestamp}.json"
data = {
"topic": current_topic,
"turns": turn_count,
"conversation": conversation
}
with open(filename, "w") as f:
json.dump(data, f, indent=2)
return filename
return "export_error.txt"
def send_to_webhook(webhook_url, conversation, current_topic, turn_count):
"""Send conversation to webhook"""
if not webhook_url.startswith("http"):
return "⚠️ Invalid URL"
payload = {
"topic": current_topic,
"turns": turn_count,
"conversation": conversation
}
try:
response = requests.post(webhook_url, json=payload, timeout=10)
if response.status_code == 200:
return "✅ Sent successfully!"
return f"⚠️ Error: {response.status_code} - {response.text}"
except Exception as e:
return f"⚠️ Connection error: {str(e)}"
def add_user_contribution(user_input, conversation):
"""Add user contribution to conversation"""
if not user_input.strip():
return format_conversation_html(conversation), "Please enter a message", conversation
new_entry = {
"agent": "User",
"text": user_input,
"turn": len(conversation) + 1
}
updated_conversation = conversation + [new_entry]
embed_and_store(user_input, "User")
return format_conversation_html(updated_conversation), "✅ Added your contribution!", updated_conversation
def update_agent_params(*args):
"""Update agent parameters from sliders"""
# Last argument is the current params state
current_params = args[-1]
sliders = args[:-1]
# Map sliders to agent parameters
agents = ["Initiator", "Responder", "Guardian", "Provocateur", "Cultural", "Judge"]
params = ["creativity", "criticality"]
updated_params = {}
slider_index = 0
for agent in agents:
updated_params[agent] = {}
for param in params:
updated_params[agent][param] = sliders[slider_index]
slider_index += 1
return updated_params
# Custom CSS
demo.css = """
.convo-container {
max-height: 400px;
overflow-y: auto;
padding: 15px;
border: 1px solid #e0e0e0;
border-radius: 8px;
background-color: #f9f9f9;
line-height: 1.6;
}
.convo-container p {
margin-bottom: 10px;
}
#topic-display {
font-weight: bold;
font-size: 1.1em;
}
.free-model-notice {
background-color: #e6f7ff;
padding: 10px;
border-radius: 5px;
margin-bottom: 15px;
border-left: 4px solid #1890ff;
}
"""
# Free model notice
gr.Markdown("""
<div class="free-model-notice">
<b>Using Free Models:</b> This version uses open-source models from Hugging Face.
Responses may be slower and less refined than commercial APIs.
Consider using local GPU for better performance.
</div>
""")
# Event handlers with proper state management
qbox.submit(
overseer_respond,
inputs=[qbox, conversation_state, current_topic_state],
outputs=[overseer_out]
)
ruling_qbox.submit(
ask_judge,
inputs=[ruling_qbox, conversation_state, current_topic_state],
outputs=[judge_out]
)
step_btn.click(
step,
inputs=[topic_input, conversation_state, turn_count_state, current_topic_state, last_ruling_turn_state, agent_params_state],
outputs=[
convo_display, intervention_display, outsider_display,
cultural_display, judge_display, topic_display, turn_counter,
agent_status, conversation_state, turn_count_state, current_topic_state,
last_ruling_turn_state
]
)
auto_btn.click(
toggle_auto,
inputs=[auto_mode_state],
outputs=[auto_btn, auto_mode_state]
)
clear_btn.click(
clear_convo,
outputs=[
convo_display, intervention_display, outsider_display,
cultural_display, judge_display, topic_display, turn_counter,
agent_status, conversation_state, turn_count_state, current_topic_state,
last_ruling_turn_state, overseer_out, judge_out
]
)
topic_btn.click(
new_topic,
inputs=[conversation_state, turn_count_state, current_topic_state],
outputs=[
convo_display, topic_display, turn_counter, conversation_state,
turn_count_state, current_topic_state
]
)
ruling_btn.click(
request_ruling,
inputs=[conversation_state, current_topic_state, turn_count_state, last_ruling_turn_state],
outputs=[judge_display, conversation_state, last_ruling_turn_state]
)
analysis_btn.click(
run_analysis,
inputs=[conversation_state],
outputs=[sentiment_display, topics_display, agent_plot]
)
graph_btn.click(
generate_knowledge_graph,
inputs=[conversation_state],
outputs=[graph_display]
)
export_btn.click(
export_handler,
inputs=[format_radio, conversation_state, current_topic_state, turn_count_state],
outputs=[export_result]
)
integrate_btn.click(
send_to_webhook,
inputs=[webhook_url, conversation_state, current_topic_state, turn_count_state],
outputs=[integration_status]
)
submit_btn.click(
add_user_contribution,
inputs=[user_input, conversation_state],
outputs=[convo_display, user_feedback, conversation_state]
)
voting_btn.click(
lambda: "✅ Your vote has been recorded!",
outputs=[user_feedback]
)
flag_btn.click(
lambda: "🚩 Issue flagged for moderator review",
outputs=[user_feedback]
)
# Create input list for slider change events
slider_inputs = [agent_sliders[f"{agent}_{param}"]
for agent in ["Initiator", "Responder", "Guardian", "Provocateur", "Cultural", "Judge"]
for param in ["creativity", "critical"]]
for slider in slider_inputs:
slider.change(
update_agent_params,
inputs=slider_inputs + [agent_params_state],
outputs=[agent_params_state]
)
demo.launch()