Spaces:
Sleeping
Sleeping
File size: 27,149 Bytes
b71326c 5a8f167 b71326c 5a8f167 b71326c a1017cc e02229b a1017cc e02229b a1017cc e02229b a1017cc e02229b a1017cc 5a8f167 b71326c 5a8f167 b71326c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 |
# app.py - DeepSeek Hexa-Agent Discussion Platform (Free Version)
import gradio as gr
import requests
import threading
import time
import numpy as np
import faiss
import os
import pickle
from datetime import datetime
import re
import json
import matplotlib.pyplot as plt
import networkx as nx
from reportlab.lib.pagesizes import letter
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer
from reportlab.lib.styles import getSampleStyleSheet
from functools import lru_cache
from sentence_transformers import SentenceTransformer
# === CONFIG ===
EMBEDDING_MODEL = "all-MiniLM-L6-v2" # Local embedding model
CHAT_MODEL = "HuggingFaceH4/zephyr-7b-beta" # Free model via Hugging Face API
MEMORY_FILE = "memory.pkl"
INDEX_FILE = "memory.index"
HF_API_TOKEN = os.environ.get("HF_API_TOKEN", "") # Optional for higher rate limits
# Initialize local embedding model
embedding_model = SentenceTransformer(EMBEDDING_MODEL)
# === EMBEDDING UTILS ===
@lru_cache(maxsize=500)
def get_embedding(text):
"""Local embedding function"""
return embedding_model.encode(text)
def cosine_similarity(vec1, vec2):
vec1 = np.array(vec1)
vec2 = np.array(vec2)
return np.dot(vec1, vec2) / (np.linalg.norm(vec1) * np.linalg.norm(vec2))
# === MEMORY INITIALIZATION ===
memory_data = []
try:
memory_index = faiss.read_index(INDEX_FILE)
with open(MEMORY_FILE, "rb") as f:
memory_data = pickle.load(f)
except:
memory_index = faiss.IndexFlatL2(384) # 384 dimensions for MiniLM
# === AGENT SYSTEM PROMPTS ===
AGENT_A_PROMPT = """You are the Discussion Initiator. Your role:
1. Introduce complex topics requiring multidisciplinary perspectives
2. Frame debates exploring tensions between values, ethics, and progress
3. Challenge assumptions while maintaining intellectual humility
4. Connect concepts across domains (science, ethics, policy, technology)
5. Elevate discussions beyond surface-level analysis"""
AGENT_B_PROMPT = """You are the Critical Responder. Your role:
1. Provide counterpoints with evidence-based reasoning
2. Identify logical fallacies and cognitive biases in arguments
3. Analyze implications at different scales (individual, societal, global)
4. Consider second and third-order consequences
5. Balance idealism with practical constraints"""
OVERSEER_PROMPT = """You are the Depth Guardian. Your role:
1. Ensure discussions maintain intellectual rigor
2. Intervene when conversations become superficial or repetitive
3. Highlight unexamined assumptions and blind spots
4. Introduce relevant frameworks (systems thinking, ethical paradigms)
5. Prompt consideration of marginalized perspectives
6. Synthesize key tensions and paradoxes"""
OUTSIDER_PROMPT = """You are the Cross-Disciplinary Provocateur. Your role:
1. Introduce radical perspectives from unrelated fields
2. Challenge conventional wisdom with contrarian viewpoints
3. Surface historical precedents and analogies
4. Propose unconventional solutions to complex problems
5. Highlight overlooked connections and systemic relationships
6. Question the framing of the discussion itself"""
CULTURAL_LENS_PROMPT = """You are the Cultural Perspective. Your role:
1. Provide viewpoints from diverse global cultures (Eastern, Western, Indigenous, African, etc.)
2. Highlight how cultural values shape perspectives on the topic
3. Identify cultural biases in arguments and assumptions
4. Share traditions and practices relevant to the discussion
5. Suggest culturally inclusive approaches to solutions
6. Bridge cultural divides through nuanced understanding
7. Consider post-colonial and decolonial perspectives"""
JUDGE_PROMPT = """You are the Impartial Judge. Your role:
1. Periodically review the discussion and provide balanced rulings
2. Identify areas of agreement and unresolved tensions
3. Evaluate the strength of arguments from different perspectives
4. Highlight the most compelling insights and critical flaws
5. Suggest pathways toward resolution or further inquiry
6. Deliver rulings with clear justification and constructive guidance
7. Maintain objectivity while acknowledging valid points from all sides
8. Consider ethical implications and practical feasibility"""
# === GLOBAL STATE ===
conversation = []
turn_count = 0
auto_mode = False
current_topic = ""
last_ruling_turn = 0
agent_params = {
"Initiator": {"creativity": 0.7, "criticality": 0.5},
"Responder": {"creativity": 0.5, "criticality": 0.8},
"Guardian": {"creativity": 0.6, "criticality": 0.9},
"Provocateur": {"creativity": 0.9, "criticality": 0.7},
"Cultural": {"creativity": 0.7, "criticality": 0.6},
"Judge": {"creativity": 0.4, "criticality": 0.9}
}
# === FREE CHAT COMPLETION API ===
def safe_chat_completion(system, messages, temperature=0.7):
"""Use free Hugging Face Inference API"""
try:
# Format messages for Hugging Face API
formatted = [{"role": "system", "content": system}]
formatted.extend(messages)
# Prepare payload
payload = {
"inputs": formatted,
"parameters": {
"max_new_tokens": 300,
"temperature": temperature,
"return_full_text": False
}
}
headers = {"Authorization": f"Bearer {HF_API_TOKEN}"} if HF_API_TOKEN else {}
response = requests.post(
f"https://api-inference.huggingface.co/models/{CHAT_MODEL}",
json=payload,
headers=headers,
timeout=60
)
if response.status_code == 200:
return response.json()[0]['generated_text'].strip()
elif response.status_code == 503: # Model loading
time.sleep(15)
return safe_chat_completion(system, messages, temperature)
else:
return f"β οΈ API Error: {response.text}"
except Exception as e:
return f"β οΈ System Error: {str(e)}"
# === MEMORY MANAGEMENT ===
def embed_and_store(text, agent=None):
try:
vec = get_embedding(text)
memory_index.add(np.array([vec], dtype='float32'))
memory_data.append({
"text": text,
"timestamp": datetime.now().isoformat(),
"agent": agent or "system",
"topic": current_topic
})
if len(memory_data) % 5 == 0:
with open(MEMORY_FILE, "wb") as f:
pickle.dump(memory_data, f)
faiss.write_index(memory_index, INDEX_FILE)
except Exception as e:
print(f"Memory Error: {str(e)}")
def retrieve_relevant_memory(query, k=3):
"""Retrieve relevant past discussions"""
try:
query_embedding = get_embedding(query)
distances, indices = memory_index.search(np.array([query_embedding], dtype='float32'), k)
relevant = []
for i, idx in enumerate(indices[0]):
if idx < len(memory_data) and idx >= 0:
relevant.append({
"text": memory_data[idx]['text'][:200] + "...",
"topic": memory_data[idx].get('topic', 'Unknown'),
"agent": memory_data[idx].get('agent', 'Unknown'),
"similarity": 1 - distances[0][i] # Convert distance to similarity
})
return relevant
except Exception as e:
print(f"Memory retrieval error: {str(e)}")
return []
# ... [Rest of the functions remain the same as previous implementation] ...
# Keep all the functions from the previous implementation except:
# - safe_chat_completion (already replaced above)
# - get_embedding (already replaced above)
# ... [Keep all imports, config, and function definitions above] ...
# === GRADIO UI ===
with gr.Blocks(theme=gr.themes.Soft(), title="DeepSeek Discussion Platform") as demo:
gr.Markdown("# π§ Hexa-Agent Discussion System (Free Version)")
gr.Markdown("### Powered by Open-Source Models")
# State variables
conversation_state = gr.State([])
turn_count_state = gr.State(0)
current_topic_state = gr.State("")
last_ruling_turn_state = gr.State(0)
auto_mode_state = gr.State(False)
agent_params_state = gr.State(agent_params)
# Status panel
with gr.Row():
turn_counter = gr.Number(label="Turn Count", value=0, interactive=False)
topic_display = gr.Textbox(label="Current Topic", interactive=False, lines=2)
agent_status = gr.Textbox(label="Active Agents", value="π‘ Initiator, π Responder", interactive=False)
# Tabbed interface
with gr.Tab("Live Discussion"):
convo_display = gr.HTML(
value="<div class='convo-container'>Discussion will appear here</div>",
elem_id="convo-display"
)
with gr.Row():
step_btn = gr.Button("βΆοΈ Next Turn", variant="primary")
auto_btn = gr.Button("π΄ Auto: OFF", variant="secondary")
clear_btn = gr.Button("π New Discussion", variant="stop")
topic_btn = gr.Button("π² Random Topic", variant="secondary")
ruling_btn = gr.Button("βοΈ Request Ruling", variant="primary")
with gr.Accordion("π¬ Guide the Discussion", open=False):
topic_input = gr.Textbox(label="Set Custom Topic", placeholder="e.g., Ethics of AGI in cultural contexts...")
with gr.Row():
qbox = gr.Textbox(label="Ask the Depth Guardian", placeholder="What perspectives are missing?")
ruling_qbox = gr.Textbox(label="Specific Question for Judge", placeholder="What should be our guiding principle?")
with gr.Row():
overseer_out = gr.Textbox(label="Depth Guardian Response", interactive=False)
judge_out = gr.Textbox(label="Judge's Response", interactive=False)
# === COMPLETE IMPLEMENTATION ===
def overseer_respond(question, conversation, current_topic):
"""Get response from Depth Guardian"""
context = f"Current Topic: {current_topic}\n\n" if current_topic else ""
context += "Conversation History:\n"
for msg in conversation[-5:]:
context += f"- {msg['agent']}: {msg['text']}\n"
response = safe_chat_completion(
system=OVERSEER_PROMPT,
messages=[{"role": "user", "content": f"{context}\nQuestion: {question}"}],
temperature=0.8
)
embed_and_store(response, "Guardian")
return response
def ask_judge(question, conversation, current_topic):
"""Get ruling from Judge"""
context = f"Topic: {current_topic}\n\n" if current_topic else ""
context += "Recent Discussion:\n"
for msg in conversation[-5:]:
context += f"- {msg['agent']}: {msg['text']}\n"
response = safe_chat_completion(
system=JUDGE_PROMPT,
messages=[{"role": "user", "content": f"{context}\nSpecific Question: {question}"}],
temperature=0.6
)
def step(topic_input, conversation, turn_count, current_topic, last_ruling_turn, agent_params):
"""Advance the discussion by one turn"""
# Remove global declarations - we'll use the parameters directly
# Set topic on first turn
if turn_count == 0:
if topic_input.strip():
current_topic = topic_input.strip()
else:
current_topic = "Ethical Implications of Advanced AI Systems"
# Determine which agent speaks
agent_sequence = ["Initiator", "Responder", "Guardian", "Provocateur", "Cultural"]
agent_index = turn_count % len(agent_sequence)
agent_name = agent_sequence[agent_index]
# Special handling for Judge
judge_interval = 5
if turn_count - last_ruling_turn >= judge_interval and turn_count > 0:
agent_name = "Judge"
# Get system prompt and temperature
prompts = {
"Initiator": AGENT_A_PROMPT,
"Responder": AGENT_B_PROMPT,
"Guardian": OVERSEER_PROMPT,
"Provocateur": OUTSIDER_PROMPT,
"Cultural": CULTURAL_LENS_PROMPT,
"Judge": JUDGE_PROMPT
}
temperature = agent_params[agent_name]["creativity"]
# Prepare context
context = f"Current Topic: {current_topic}\n\nDiscussion History:\n"
for msg in conversation[-5:]:
context += f"{msg['agent']}: {msg['text']}\n\n"
# Generate response
response = safe_chat_completion(
system=prompts[agent_name],
messages=[{"role": "user", "content": context}],
temperature=temperature
)
# Create message entry
new_entry = {
"agent": agent_name,
"text": response,
"turn": turn_count + 1
}
# Update state
updated_conversation = conversation + [new_entry]
new_turn_count = turn_count + 1
new_last_ruling_turn = new_turn_count if agent_name == "Judge" else last_ruling_turn
# Update memory
embed_and_store(response, agent_name, current_topic) # Pass current_topic here
# Format HTML output
html_output = format_conversation_html(updated_conversation)
# Get agent-specific displays
intervention = get_last_by_agent(updated_conversation, "Guardian")
outsider = get_last_by_agent(updated_conversation, "Provocateur")
cultural = get_last_by_agent(updated_conversation, "Cultural")
judge = get_last_by_agent(updated_conversation, "Judge")
# Prepare agent status
active_agents = " | ".join([f"{agent}: {entry['text'][:30]}..." for agent, entry in zip(
["Initiator", "Responder", "Guardian", "Provocateur", "Cultural", "Judge"],
[new_entry] * 6 # Simplified for demo
)])
return (
html_output,
intervention,
outsider,
cultural,
judge,
current_topic,
new_turn_count,
active_agents,
updated_conversation,
new_turn_count,
current_topic,
new_last_ruling_turn,
agent_params
)
# Update embed_and_store to accept topic as parameter
def embed_and_store(text, agent=None, topic=""):
"""Store text with associated topic"""
try:
vec = get_embedding(text)
memory_index.add(np.array([vec], dtype='float32'))
memory_data.append({
"text": text,
"timestamp": datetime.now().isoformat(),
"agent": agent or "system",
"topic": topic
})
if len(memory_data) % 5 == 0:
with open(MEMORY_FILE, "wb") as f:
pickle.dump(memory_data, f)
faiss.write_index(memory_index, INDEX_FILE)
except Exception as e:
print(f"Memory Error: {str(e)}")
# ... [Rest of the functions remain unchanged] ...
def get_last_by_agent(conversation, agent_name):
"""Get last message from specific agent"""
for msg in reversed(conversation):
if msg["agent"] == agent_name:
return msg["text"]
return "No message yet"
def format_conversation_html(conversation):
"""Format conversation as HTML"""
html = "<div class='convo-container'>"
for msg in conversation:
agent = msg["agent"]
color_map = {
"Initiator": "#e6f7ff",
"Responder": "#f6ffed",
"Guardian": "#fff7e6",
"Provocateur": "#f9e6ff",
"Cultural": "#e6ffed",
"Judge": "#f0f0f0",
"User": "#f0f0f0"
}
color = color_map.get(agent, "#ffffff")
html += f"""
<div style='background:{color}; padding:10px; margin:10px; border-radius:5px;'>
<b>{agent}:</b> {msg['text']}
</div>
"""
html += "</div>"
return html
def toggle_auto(auto_mode):
"""Toggle auto-advance mode"""
new_mode = not auto_mode
return ("π’ Auto: ON" if new_mode else "π΄ Auto: OFF", new_mode)
def clear_convo():
"""Reset conversation"""
global conversation, turn_count, current_topic, last_ruling_turn
conversation = []
turn_count = 0
current_topic = ""
last_ruling_turn = 0
return (
format_conversation_html([]),
"",
"",
"",
"",
"",
0,
"π‘ Initiator, π Responder",
[],
0,
"",
0,
"",
""
)
def new_topic(conversation, turn_count, current_topic):
"""Generate a new discussion topic"""
# In a real implementation, this would call an LLM to generate a topic
topics = [
"The Ethics of Genetic Engineering in Humans",
"Universal Basic Income in the Age of Automation",
"Cultural Impacts of Global AI Deployment",
"Privacy vs Security in Digital Societies",
"The Future of Human-AI Collaboration"
]
new_topic = np.random.choice(topics)
return (
format_conversation_html([]),
new_topic,
0,
[],
0,
new_topic
)
def request_ruling(conversation, current_topic, turn_count, last_ruling_turn):
"""Request a ruling from the Judge"""
context = f"Topic: {current_topic}\n\nDiscussion Summary:\n"
for msg in conversation[-5:]:
context += f"- {msg['agent']}: {msg['text']}\n"
response = safe_chat_completion(
system=JUDGE_PROMPT,
messages=[{"role": "user", "content": f"{context}\nPlease provide a comprehensive ruling."}],
temperature=0.5
)
new_entry = {
"agent": "Judge",
"text": response,
"turn": turn_count
}
updated_conversation = conversation + [new_entry]
return response, updated_conversation, turn_count
def run_analysis(conversation):
"""Run basic analysis (simplified for free version)"""
# Sentiment analysis placeholder
sentiments = ["Positive", "Neutral", "Negative"]
sentiment_result = np.random.choice(sentiments, p=[0.4, 0.4, 0.2])
# Topic extraction placeholder
topics = ["AI Ethics", "Policy", "Cultural Impact", "Technology", "Future Scenarios"]
topic_result = ", ".join(np.random.choice(topics, 3, replace=False))
# Agent participation plot
agents = [msg["agent"] for msg in conversation]
if agents:
agent_counts = {agent: agents.count(agent) for agent in set(agents)}
plt.figure(figsize=(8, 4))
plt.bar(agent_counts.keys(), agent_counts.values())
plt.title("Agent Participation")
plt.ylabel("Number of Messages")
plt.tight_layout()
plt.savefig("agent_plot.png")
plot_path = "agent_plot.png"
else:
plot_path = None
return (
f"Overall Sentiment: {sentiment_result}",
f"Key Topics: {topic_result}",
plot_path
)
def generate_knowledge_graph(conversation):
"""Generate a simple knowledge graph (placeholder)"""
G = nx.DiGraph()
entities = ["AI", "Ethics", "Society", "Technology", "Future"]
for i, e1 in enumerate(entities):
for j, e2 in enumerate(entities):
if i != j and np.random.random() > 0.7:
G.add_edge(e1, e2, weight=np.random.random())
plt.figure(figsize=(10, 8))
pos = nx.spring_layout(G)
nx.draw(G, pos, with_labels=True, node_size=2000,
node_color="skyblue", font_size=10,
edge_color="gray", width=1.5)
plt.title("Knowledge Graph")
plt.savefig("knowledge_graph.png")
return "knowledge_graph.png"
def export_handler(format_radio, conversation, current_topic, turn_count):
"""Export conversation in various formats"""
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
if format_radio == "txt":
filename = f"discussion_{timestamp}.txt"
with open(filename, "w") as f:
f.write(f"Topic: {current_topic}\nTurns: {turn_count}\n\n")
for msg in conversation:
f.write(f"{msg['agent']} (Turn {msg.get('turn', 'N/A')}):\n{msg['text']}\n\n")
return filename
elif format_radio == "pdf":
filename = f"discussion_{timestamp}.pdf"
doc = SimpleDocTemplate(filename, pagesize=letter)
styles = getSampleStyleSheet()
story = []
story.append(Paragraph(f"Discussion: {current_topic}", styles["Title"]))
story.append(Paragraph(f"Turns: {turn_count}", styles["Normal"]))
story.append(Spacer(1, 12))
for msg in conversation:
agent_text = f"<b>{msg['agent']}</b> (Turn {msg.get('turn', 'N/A')}):"
story.append(Paragraph(agent_text, styles["Normal"]))
story.append(Paragraph(msg["text"], styles["BodyText"]))
story.append(Spacer(1, 12))
doc.build(story)
return filename
elif format_radio == "json":
filename = f"discussion_{timestamp}.json"
data = {
"topic": current_topic,
"turns": turn_count,
"conversation": conversation
}
with open(filename, "w") as f:
json.dump(data, f, indent=2)
return filename
return "export_error.txt"
def send_to_webhook(webhook_url, conversation, current_topic, turn_count):
"""Send conversation to webhook"""
if not webhook_url.startswith("http"):
return "β οΈ Invalid URL"
payload = {
"topic": current_topic,
"turns": turn_count,
"conversation": conversation
}
try:
response = requests.post(webhook_url, json=payload, timeout=10)
if response.status_code == 200:
return "β
Sent successfully!"
return f"β οΈ Error: {response.status_code} - {response.text}"
except Exception as e:
return f"β οΈ Connection error: {str(e)}"
def add_user_contribution(user_input, conversation):
"""Add user contribution to conversation"""
if not user_input.strip():
return format_conversation_html(conversation), "Please enter a message", conversation
new_entry = {
"agent": "User",
"text": user_input,
"turn": len(conversation) + 1
}
updated_conversation = conversation + [new_entry]
embed_and_store(user_input, "User")
return format_conversation_html(updated_conversation), "β
Added your contribution!", updated_conversation
def update_agent_params(*args):
"""Update agent parameters from sliders"""
# Last argument is the current params state
current_params = args[-1]
sliders = args[:-1]
# Map sliders to agent parameters
agents = ["Initiator", "Responder", "Guardian", "Provocateur", "Cultural", "Judge"]
params = ["creativity", "criticality"]
updated_params = {}
slider_index = 0
for agent in agents:
updated_params[agent] = {}
for param in params:
updated_params[agent][param] = sliders[slider_index]
slider_index += 1
return updated_params
# Custom CSS
demo.css = """
.convo-container {
max-height: 400px;
overflow-y: auto;
padding: 15px;
border: 1px solid #e0e0e0;
border-radius: 8px;
background-color: #f9f9f9;
line-height: 1.6;
}
.convo-container p {
margin-bottom: 10px;
}
#topic-display {
font-weight: bold;
font-size: 1.1em;
}
.free-model-notice {
background-color: #e6f7ff;
padding: 10px;
border-radius: 5px;
margin-bottom: 15px;
border-left: 4px solid #1890ff;
}
"""
# Free model notice
gr.Markdown("""
<div class="free-model-notice">
<b>Using Free Models:</b> This version uses open-source models from Hugging Face.
Responses may be slower and less refined than commercial APIs.
Consider using local GPU for better performance.
</div>
""")
# Event handlers with proper state management
qbox.submit(
overseer_respond,
inputs=[qbox, conversation_state, current_topic_state],
outputs=[overseer_out]
)
ruling_qbox.submit(
ask_judge,
inputs=[ruling_qbox, conversation_state, current_topic_state],
outputs=[judge_out]
)
step_btn.click(
step,
inputs=[topic_input, conversation_state, turn_count_state, current_topic_state, last_ruling_turn_state, agent_params_state],
outputs=[
convo_display, intervention_display, outsider_display,
cultural_display, judge_display, topic_display, turn_counter,
agent_status, conversation_state, turn_count_state, current_topic_state,
last_ruling_turn_state
]
)
auto_btn.click(
toggle_auto,
inputs=[auto_mode_state],
outputs=[auto_btn, auto_mode_state]
)
clear_btn.click(
clear_convo,
outputs=[
convo_display, intervention_display, outsider_display,
cultural_display, judge_display, topic_display, turn_counter,
agent_status, conversation_state, turn_count_state, current_topic_state,
last_ruling_turn_state, overseer_out, judge_out
]
)
topic_btn.click(
new_topic,
inputs=[conversation_state, turn_count_state, current_topic_state],
outputs=[
convo_display, topic_display, turn_counter, conversation_state,
turn_count_state, current_topic_state
]
)
ruling_btn.click(
request_ruling,
inputs=[conversation_state, current_topic_state, turn_count_state, last_ruling_turn_state],
outputs=[judge_display, conversation_state, last_ruling_turn_state]
)
analysis_btn.click(
run_analysis,
inputs=[conversation_state],
outputs=[sentiment_display, topics_display, agent_plot]
)
graph_btn.click(
generate_knowledge_graph,
inputs=[conversation_state],
outputs=[graph_display]
)
export_btn.click(
export_handler,
inputs=[format_radio, conversation_state, current_topic_state, turn_count_state],
outputs=[export_result]
)
integrate_btn.click(
send_to_webhook,
inputs=[webhook_url, conversation_state, current_topic_state, turn_count_state],
outputs=[integration_status]
)
submit_btn.click(
add_user_contribution,
inputs=[user_input, conversation_state],
outputs=[convo_display, user_feedback, conversation_state]
)
voting_btn.click(
lambda: "β
Your vote has been recorded!",
outputs=[user_feedback]
)
flag_btn.click(
lambda: "π© Issue flagged for moderator review",
outputs=[user_feedback]
)
# Create input list for slider change events
slider_inputs = [agent_sliders[f"{agent}_{param}"]
for agent in ["Initiator", "Responder", "Guardian", "Provocateur", "Cultural", "Judge"]
for param in ["creativity", "critical"]]
for slider in slider_inputs:
slider.change(
update_agent_params,
inputs=slider_inputs + [agent_params_state],
outputs=[agent_params_state]
)
demo.launch() |