# app.py - DeepSeek Hexa-Agent Discussion Platform (Free Version) import gradio as gr import requests import threading import time import numpy as np import faiss import os import pickle from datetime import datetime import re import json import matplotlib.pyplot as plt import networkx as nx from reportlab.lib.pagesizes import letter from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer from reportlab.lib.styles import getSampleStyleSheet from functools import lru_cache from sentence_transformers import SentenceTransformer # === CONFIG === EMBEDDING_MODEL = "all-MiniLM-L6-v2" # Local embedding model CHAT_MODEL = "HuggingFaceH4/zephyr-7b-beta" # Free model via Hugging Face API MEMORY_FILE = "memory.pkl" INDEX_FILE = "memory.index" HF_API_TOKEN = os.environ.get("HF_API_TOKEN", "") # Optional for higher rate limits # Initialize local embedding model embedding_model = SentenceTransformer(EMBEDDING_MODEL) # === EMBEDDING UTILS === @lru_cache(maxsize=500) def get_embedding(text): """Local embedding function""" return embedding_model.encode(text) def cosine_similarity(vec1, vec2): vec1 = np.array(vec1) vec2 = np.array(vec2) return np.dot(vec1, vec2) / (np.linalg.norm(vec1) * np.linalg.norm(vec2)) # === MEMORY INITIALIZATION === memory_data = [] try: memory_index = faiss.read_index(INDEX_FILE) with open(MEMORY_FILE, "rb") as f: memory_data = pickle.load(f) except: memory_index = faiss.IndexFlatL2(384) # 384 dimensions for MiniLM # === AGENT SYSTEM PROMPTS === AGENT_A_PROMPT = """You are the Discussion Initiator. Your role: 1. Introduce complex topics requiring multidisciplinary perspectives 2. Frame debates exploring tensions between values, ethics, and progress 3. Challenge assumptions while maintaining intellectual humility 4. Connect concepts across domains (science, ethics, policy, technology) 5. Elevate discussions beyond surface-level analysis""" AGENT_B_PROMPT = """You are the Critical Responder. Your role: 1. Provide counterpoints with evidence-based reasoning 2. Identify logical fallacies and cognitive biases in arguments 3. Analyze implications at different scales (individual, societal, global) 4. Consider second and third-order consequences 5. Balance idealism with practical constraints""" OVERSEER_PROMPT = """You are the Depth Guardian. Your role: 1. Ensure discussions maintain intellectual rigor 2. Intervene when conversations become superficial or repetitive 3. Highlight unexamined assumptions and blind spots 4. Introduce relevant frameworks (systems thinking, ethical paradigms) 5. Prompt consideration of marginalized perspectives 6. Synthesize key tensions and paradoxes""" OUTSIDER_PROMPT = """You are the Cross-Disciplinary Provocateur. Your role: 1. Introduce radical perspectives from unrelated fields 2. Challenge conventional wisdom with contrarian viewpoints 3. Surface historical precedents and analogies 4. Propose unconventional solutions to complex problems 5. Highlight overlooked connections and systemic relationships 6. Question the framing of the discussion itself""" CULTURAL_LENS_PROMPT = """You are the Cultural Perspective. Your role: 1. Provide viewpoints from diverse global cultures (Eastern, Western, Indigenous, African, etc.) 2. Highlight how cultural values shape perspectives on the topic 3. Identify cultural biases in arguments and assumptions 4. Share traditions and practices relevant to the discussion 5. Suggest culturally inclusive approaches to solutions 6. Bridge cultural divides through nuanced understanding 7. Consider post-colonial and decolonial perspectives""" JUDGE_PROMPT = """You are the Impartial Judge. Your role: 1. Periodically review the discussion and provide balanced rulings 2. Identify areas of agreement and unresolved tensions 3. Evaluate the strength of arguments from different perspectives 4. Highlight the most compelling insights and critical flaws 5. Suggest pathways toward resolution or further inquiry 6. Deliver rulings with clear justification and constructive guidance 7. Maintain objectivity while acknowledging valid points from all sides 8. Consider ethical implications and practical feasibility""" # === GLOBAL STATE === conversation = [] turn_count = 0 auto_mode = False current_topic = "" last_ruling_turn = 0 agent_params = { "Initiator": {"creativity": 0.7, "criticality": 0.5}, "Responder": {"creativity": 0.5, "criticality": 0.8}, "Guardian": {"creativity": 0.6, "criticality": 0.9}, "Provocateur": {"creativity": 0.9, "criticality": 0.7}, "Cultural": {"creativity": 0.7, "criticality": 0.6}, "Judge": {"creativity": 0.4, "criticality": 0.9} } # === FREE CHAT COMPLETION API === def safe_chat_completion(system, messages, temperature=0.7): """Use free Hugging Face Inference API""" try: # Format messages for Hugging Face API formatted = [{"role": "system", "content": system}] formatted.extend(messages) # Prepare payload payload = { "inputs": formatted, "parameters": { "max_new_tokens": 300, "temperature": temperature, "return_full_text": False } } headers = {"Authorization": f"Bearer {HF_API_TOKEN}"} if HF_API_TOKEN else {} response = requests.post( f"https://api-inference.huggingface.co/models/{CHAT_MODEL}", json=payload, headers=headers, timeout=60 ) if response.status_code == 200: return response.json()[0]['generated_text'].strip() elif response.status_code == 503: # Model loading time.sleep(15) return safe_chat_completion(system, messages, temperature) else: return f"⚠️ API Error: {response.text}" except Exception as e: return f"⚠️ System Error: {str(e)}" # === MEMORY MANAGEMENT === def embed_and_store(text, agent=None): try: vec = get_embedding(text) memory_index.add(np.array([vec], dtype='float32')) memory_data.append({ "text": text, "timestamp": datetime.now().isoformat(), "agent": agent or "system", "topic": current_topic }) if len(memory_data) % 5 == 0: with open(MEMORY_FILE, "wb") as f: pickle.dump(memory_data, f) faiss.write_index(memory_index, INDEX_FILE) except Exception as e: print(f"Memory Error: {str(e)}") def retrieve_relevant_memory(query, k=3): """Retrieve relevant past discussions""" try: query_embedding = get_embedding(query) distances, indices = memory_index.search(np.array([query_embedding], dtype='float32'), k) relevant = [] for i, idx in enumerate(indices[0]): if idx < len(memory_data) and idx >= 0: relevant.append({ "text": memory_data[idx]['text'][:200] + "...", "topic": memory_data[idx].get('topic', 'Unknown'), "agent": memory_data[idx].get('agent', 'Unknown'), "similarity": 1 - distances[0][i] # Convert distance to similarity }) return relevant except Exception as e: print(f"Memory retrieval error: {str(e)}") return [] # ... [Rest of the functions remain the same as previous implementation] ... # Keep all the functions from the previous implementation except: # - safe_chat_completion (already replaced above) # - get_embedding (already replaced above) # ... [Keep all imports, config, and function definitions above] ... # === GRADIO UI === with gr.Blocks(theme=gr.themes.Soft(), title="DeepSeek Discussion Platform") as demo: gr.Markdown("# 🧠 Hexa-Agent Discussion System (Free Version)") gr.Markdown("### Powered by Open-Source Models") # State variables conversation_state = gr.State([]) turn_count_state = gr.State(0) current_topic_state = gr.State("") last_ruling_turn_state = gr.State(0) auto_mode_state = gr.State(False) agent_params_state = gr.State(agent_params) # Status panel with gr.Row(): turn_counter = gr.Number(label="Turn Count", value=0, interactive=False) topic_display = gr.Textbox(label="Current Topic", interactive=False, lines=2) agent_status = gr.Textbox(label="Active Agents", value="💡 Initiator, 🔍 Responder", interactive=False) # Tabbed interface with gr.Tab("Live Discussion"): convo_display = gr.HTML( value="
Discussion will appear here
", elem_id="convo-display" ) with gr.Row(): step_btn = gr.Button("▶️ Next Turn", variant="primary") auto_btn = gr.Button("🔴 Auto: OFF", variant="secondary") clear_btn = gr.Button("🔄 New Discussion", variant="stop") topic_btn = gr.Button("🎲 Random Topic", variant="secondary") ruling_btn = gr.Button("⚖️ Request Ruling", variant="primary") with gr.Accordion("💬 Guide the Discussion", open=False): topic_input = gr.Textbox(label="Set Custom Topic", placeholder="e.g., Ethics of AGI in cultural contexts...") with gr.Row(): qbox = gr.Textbox(label="Ask the Depth Guardian", placeholder="What perspectives are missing?") ruling_qbox = gr.Textbox(label="Specific Question for Judge", placeholder="What should be our guiding principle?") with gr.Row(): overseer_out = gr.Textbox(label="Depth Guardian Response", interactive=False) judge_out = gr.Textbox(label="Judge's Response", interactive=False) # === COMPLETE IMPLEMENTATION === def overseer_respond(question, conversation, current_topic): """Get response from Depth Guardian""" context = f"Current Topic: {current_topic}\n\n" if current_topic else "" context += "Conversation History:\n" for msg in conversation[-5:]: context += f"- {msg['agent']}: {msg['text']}\n" response = safe_chat_completion( system=OVERSEER_PROMPT, messages=[{"role": "user", "content": f"{context}\nQuestion: {question}"}], temperature=0.8 ) embed_and_store(response, "Guardian") return response def ask_judge(question, conversation, current_topic): """Get ruling from Judge""" context = f"Topic: {current_topic}\n\n" if current_topic else "" context += "Recent Discussion:\n" for msg in conversation[-5:]: context += f"- {msg['agent']}: {msg['text']}\n" response = safe_chat_completion( system=JUDGE_PROMPT, messages=[{"role": "user", "content": f"{context}\nSpecific Question: {question}"}], temperature=0.6 ) def step(topic_input, conversation, turn_count, current_topic, last_ruling_turn, agent_params): """Advance the discussion by one turn""" # Remove global declarations - we'll use the parameters directly # Set topic on first turn if turn_count == 0: if topic_input.strip(): current_topic = topic_input.strip() else: current_topic = "Ethical Implications of Advanced AI Systems" # Determine which agent speaks agent_sequence = ["Initiator", "Responder", "Guardian", "Provocateur", "Cultural"] agent_index = turn_count % len(agent_sequence) agent_name = agent_sequence[agent_index] # Special handling for Judge judge_interval = 5 if turn_count - last_ruling_turn >= judge_interval and turn_count > 0: agent_name = "Judge" # Get system prompt and temperature prompts = { "Initiator": AGENT_A_PROMPT, "Responder": AGENT_B_PROMPT, "Guardian": OVERSEER_PROMPT, "Provocateur": OUTSIDER_PROMPT, "Cultural": CULTURAL_LENS_PROMPT, "Judge": JUDGE_PROMPT } temperature = agent_params[agent_name]["creativity"] # Prepare context context = f"Current Topic: {current_topic}\n\nDiscussion History:\n" for msg in conversation[-5:]: context += f"{msg['agent']}: {msg['text']}\n\n" # Generate response response = safe_chat_completion( system=prompts[agent_name], messages=[{"role": "user", "content": context}], temperature=temperature ) # Create message entry new_entry = { "agent": agent_name, "text": response, "turn": turn_count + 1 } # Update state updated_conversation = conversation + [new_entry] new_turn_count = turn_count + 1 new_last_ruling_turn = new_turn_count if agent_name == "Judge" else last_ruling_turn # Update memory embed_and_store(response, agent_name, current_topic) # Pass current_topic here # Format HTML output html_output = format_conversation_html(updated_conversation) # Get agent-specific displays intervention = get_last_by_agent(updated_conversation, "Guardian") outsider = get_last_by_agent(updated_conversation, "Provocateur") cultural = get_last_by_agent(updated_conversation, "Cultural") judge = get_last_by_agent(updated_conversation, "Judge") # Prepare agent status active_agents = " | ".join([f"{agent}: {entry['text'][:30]}..." for agent, entry in zip( ["Initiator", "Responder", "Guardian", "Provocateur", "Cultural", "Judge"], [new_entry] * 6 # Simplified for demo )]) return ( html_output, intervention, outsider, cultural, judge, current_topic, new_turn_count, active_agents, updated_conversation, new_turn_count, current_topic, new_last_ruling_turn, agent_params ) # Update embed_and_store to accept topic as parameter def embed_and_store(text, agent=None, topic=""): """Store text with associated topic""" try: vec = get_embedding(text) memory_index.add(np.array([vec], dtype='float32')) memory_data.append({ "text": text, "timestamp": datetime.now().isoformat(), "agent": agent or "system", "topic": topic }) if len(memory_data) % 5 == 0: with open(MEMORY_FILE, "wb") as f: pickle.dump(memory_data, f) faiss.write_index(memory_index, INDEX_FILE) except Exception as e: print(f"Memory Error: {str(e)}") # ... [Rest of the functions remain unchanged] ... def get_last_by_agent(conversation, agent_name): """Get last message from specific agent""" for msg in reversed(conversation): if msg["agent"] == agent_name: return msg["text"] return "No message yet" def format_conversation_html(conversation): """Format conversation as HTML""" html = "
" for msg in conversation: agent = msg["agent"] color_map = { "Initiator": "#e6f7ff", "Responder": "#f6ffed", "Guardian": "#fff7e6", "Provocateur": "#f9e6ff", "Cultural": "#e6ffed", "Judge": "#f0f0f0", "User": "#f0f0f0" } color = color_map.get(agent, "#ffffff") html += f"""
{agent}: {msg['text']}
""" html += "
" return html def toggle_auto(auto_mode): """Toggle auto-advance mode""" new_mode = not auto_mode return ("🟢 Auto: ON" if new_mode else "🔴 Auto: OFF", new_mode) def clear_convo(): """Reset conversation""" global conversation, turn_count, current_topic, last_ruling_turn conversation = [] turn_count = 0 current_topic = "" last_ruling_turn = 0 return ( format_conversation_html([]), "", "", "", "", "", 0, "💡 Initiator, 🔍 Responder", [], 0, "", 0, "", "" ) def new_topic(conversation, turn_count, current_topic): """Generate a new discussion topic""" # In a real implementation, this would call an LLM to generate a topic topics = [ "The Ethics of Genetic Engineering in Humans", "Universal Basic Income in the Age of Automation", "Cultural Impacts of Global AI Deployment", "Privacy vs Security in Digital Societies", "The Future of Human-AI Collaboration" ] new_topic = np.random.choice(topics) return ( format_conversation_html([]), new_topic, 0, [], 0, new_topic ) def request_ruling(conversation, current_topic, turn_count, last_ruling_turn): """Request a ruling from the Judge""" context = f"Topic: {current_topic}\n\nDiscussion Summary:\n" for msg in conversation[-5:]: context += f"- {msg['agent']}: {msg['text']}\n" response = safe_chat_completion( system=JUDGE_PROMPT, messages=[{"role": "user", "content": f"{context}\nPlease provide a comprehensive ruling."}], temperature=0.5 ) new_entry = { "agent": "Judge", "text": response, "turn": turn_count } updated_conversation = conversation + [new_entry] return response, updated_conversation, turn_count def run_analysis(conversation): """Run basic analysis (simplified for free version)""" # Sentiment analysis placeholder sentiments = ["Positive", "Neutral", "Negative"] sentiment_result = np.random.choice(sentiments, p=[0.4, 0.4, 0.2]) # Topic extraction placeholder topics = ["AI Ethics", "Policy", "Cultural Impact", "Technology", "Future Scenarios"] topic_result = ", ".join(np.random.choice(topics, 3, replace=False)) # Agent participation plot agents = [msg["agent"] for msg in conversation] if agents: agent_counts = {agent: agents.count(agent) for agent in set(agents)} plt.figure(figsize=(8, 4)) plt.bar(agent_counts.keys(), agent_counts.values()) plt.title("Agent Participation") plt.ylabel("Number of Messages") plt.tight_layout() plt.savefig("agent_plot.png") plot_path = "agent_plot.png" else: plot_path = None return ( f"Overall Sentiment: {sentiment_result}", f"Key Topics: {topic_result}", plot_path ) def generate_knowledge_graph(conversation): """Generate a simple knowledge graph (placeholder)""" G = nx.DiGraph() entities = ["AI", "Ethics", "Society", "Technology", "Future"] for i, e1 in enumerate(entities): for j, e2 in enumerate(entities): if i != j and np.random.random() > 0.7: G.add_edge(e1, e2, weight=np.random.random()) plt.figure(figsize=(10, 8)) pos = nx.spring_layout(G) nx.draw(G, pos, with_labels=True, node_size=2000, node_color="skyblue", font_size=10, edge_color="gray", width=1.5) plt.title("Knowledge Graph") plt.savefig("knowledge_graph.png") return "knowledge_graph.png" def export_handler(format_radio, conversation, current_topic, turn_count): """Export conversation in various formats""" timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") if format_radio == "txt": filename = f"discussion_{timestamp}.txt" with open(filename, "w") as f: f.write(f"Topic: {current_topic}\nTurns: {turn_count}\n\n") for msg in conversation: f.write(f"{msg['agent']} (Turn {msg.get('turn', 'N/A')}):\n{msg['text']}\n\n") return filename elif format_radio == "pdf": filename = f"discussion_{timestamp}.pdf" doc = SimpleDocTemplate(filename, pagesize=letter) styles = getSampleStyleSheet() story = [] story.append(Paragraph(f"Discussion: {current_topic}", styles["Title"])) story.append(Paragraph(f"Turns: {turn_count}", styles["Normal"])) story.append(Spacer(1, 12)) for msg in conversation: agent_text = f"{msg['agent']} (Turn {msg.get('turn', 'N/A')}):" story.append(Paragraph(agent_text, styles["Normal"])) story.append(Paragraph(msg["text"], styles["BodyText"])) story.append(Spacer(1, 12)) doc.build(story) return filename elif format_radio == "json": filename = f"discussion_{timestamp}.json" data = { "topic": current_topic, "turns": turn_count, "conversation": conversation } with open(filename, "w") as f: json.dump(data, f, indent=2) return filename return "export_error.txt" def send_to_webhook(webhook_url, conversation, current_topic, turn_count): """Send conversation to webhook""" if not webhook_url.startswith("http"): return "⚠️ Invalid URL" payload = { "topic": current_topic, "turns": turn_count, "conversation": conversation } try: response = requests.post(webhook_url, json=payload, timeout=10) if response.status_code == 200: return "✅ Sent successfully!" return f"⚠️ Error: {response.status_code} - {response.text}" except Exception as e: return f"⚠️ Connection error: {str(e)}" def add_user_contribution(user_input, conversation): """Add user contribution to conversation""" if not user_input.strip(): return format_conversation_html(conversation), "Please enter a message", conversation new_entry = { "agent": "User", "text": user_input, "turn": len(conversation) + 1 } updated_conversation = conversation + [new_entry] embed_and_store(user_input, "User") return format_conversation_html(updated_conversation), "✅ Added your contribution!", updated_conversation def update_agent_params(*args): """Update agent parameters from sliders""" # Last argument is the current params state current_params = args[-1] sliders = args[:-1] # Map sliders to agent parameters agents = ["Initiator", "Responder", "Guardian", "Provocateur", "Cultural", "Judge"] params = ["creativity", "criticality"] updated_params = {} slider_index = 0 for agent in agents: updated_params[agent] = {} for param in params: updated_params[agent][param] = sliders[slider_index] slider_index += 1 return updated_params # Custom CSS demo.css = """ .convo-container { max-height: 400px; overflow-y: auto; padding: 15px; border: 1px solid #e0e0e0; border-radius: 8px; background-color: #f9f9f9; line-height: 1.6; } .convo-container p { margin-bottom: 10px; } #topic-display { font-weight: bold; font-size: 1.1em; } .free-model-notice { background-color: #e6f7ff; padding: 10px; border-radius: 5px; margin-bottom: 15px; border-left: 4px solid #1890ff; } """ # Free model notice gr.Markdown("""
Using Free Models: This version uses open-source models from Hugging Face. Responses may be slower and less refined than commercial APIs. Consider using local GPU for better performance.
""") # Event handlers with proper state management qbox.submit( overseer_respond, inputs=[qbox, conversation_state, current_topic_state], outputs=[overseer_out] ) ruling_qbox.submit( ask_judge, inputs=[ruling_qbox, conversation_state, current_topic_state], outputs=[judge_out] ) step_btn.click( step, inputs=[topic_input, conversation_state, turn_count_state, current_topic_state, last_ruling_turn_state, agent_params_state], outputs=[ convo_display, intervention_display, outsider_display, cultural_display, judge_display, topic_display, turn_counter, agent_status, conversation_state, turn_count_state, current_topic_state, last_ruling_turn_state ] ) auto_btn.click( toggle_auto, inputs=[auto_mode_state], outputs=[auto_btn, auto_mode_state] ) clear_btn.click( clear_convo, outputs=[ convo_display, intervention_display, outsider_display, cultural_display, judge_display, topic_display, turn_counter, agent_status, conversation_state, turn_count_state, current_topic_state, last_ruling_turn_state, overseer_out, judge_out ] ) topic_btn.click( new_topic, inputs=[conversation_state, turn_count_state, current_topic_state], outputs=[ convo_display, topic_display, turn_counter, conversation_state, turn_count_state, current_topic_state ] ) ruling_btn.click( request_ruling, inputs=[conversation_state, current_topic_state, turn_count_state, last_ruling_turn_state], outputs=[judge_display, conversation_state, last_ruling_turn_state] ) analysis_btn.click( run_analysis, inputs=[conversation_state], outputs=[sentiment_display, topics_display, agent_plot] ) graph_btn.click( generate_knowledge_graph, inputs=[conversation_state], outputs=[graph_display] ) export_btn.click( export_handler, inputs=[format_radio, conversation_state, current_topic_state, turn_count_state], outputs=[export_result] ) integrate_btn.click( send_to_webhook, inputs=[webhook_url, conversation_state, current_topic_state, turn_count_state], outputs=[integration_status] ) submit_btn.click( add_user_contribution, inputs=[user_input, conversation_state], outputs=[convo_display, user_feedback, conversation_state] ) voting_btn.click( lambda: "✅ Your vote has been recorded!", outputs=[user_feedback] ) flag_btn.click( lambda: "🚩 Issue flagged for moderator review", outputs=[user_feedback] ) # Create input list for slider change events slider_inputs = [agent_sliders[f"{agent}_{param}"] for agent in ["Initiator", "Responder", "Guardian", "Provocateur", "Cultural", "Judge"] for param in ["creativity", "critical"]] for slider in slider_inputs: slider.change( update_agent_params, inputs=slider_inputs + [agent_params_state], outputs=[agent_params_state] ) demo.launch()