Spaces:
Running
Running
File size: 22,083 Bytes
24342ea c89cc59 a184be7 491769d 21418e6 6baa45b ec72e3e 5d8a4d4 491769d e1ff28f 972d1e2 d17badf a184be7 d95e3f7 bf2bb14 d95e3f7 db7d152 d95e3f7 84efced d95e3f7 db7d152 bd41ace c89cc59 db7d152 a184be7 ec72e3e 5d8a4d4 ec72e3e db7d152 ec72e3e 84efced ec72e3e 84efced ec72e3e 5d8a4d4 ec72e3e 5d8a4d4 ec72e3e 84efced ec72e3e 84efced ec72e3e 84efced ec72e3e 84efced ec72e3e d797551 ec72e3e e319620 a806d95 ec72e3e 84efced ec72e3e 84efced ec72e3e 24342ea 750ea35 ec72e3e 84efced ec72e3e db7d152 5d8a4d4 6ac5501 84efced 6ac5501 db7d152 bd41ace 750ea35 c89cc59 6baa45b db7d152 6baa45b db7d152 c89cc59 8699dd9 21418e6 d797551 8699dd9 84efced 6baa45b a184be7 e319620 db7d152 e319620 db7d152 e319620 db7d152 ec72e3e e319620 db7d152 e319620 db7d152 e319620 972d1e2 db7d152 6baa45b 7b8e77a db7d152 e319620 db7d152 6baa45b db7d152 5d8a4d4 db7d152 94730d2 bd41ace 84efced 94730d2 db7d152 84efced db7d152 94730d2 db7d152 a184be7 01cbb26 9f69ff9 01cbb26 a184be7 e319620 a184be7 5d8a4d4 db7d152 bd41ace db7d152 bd41ace a184be7 21418e6 01cbb26 6baa45b 01cbb26 21418e6 6baa45b eb32926 8699dd9 6baa45b 01cbb26 d17badf a184be7 01cbb26 21418e6 d17badf 3674c04 a184be7 01cbb26 d17badf e319620 01cbb26 21418e6 e319620 01cbb26 21418e6 d17badf 3674c04 ec72e3e 84efced ec72e3e 972d1e2 3674c04 d95e3f7 db7d152 d95e3f7 01cbb26 6baa45b 98993ac 6baa45b 01cbb26 98993ac 6baa45b 01cbb26 98993ac 6baa45b 98993ac 6baa45b bd41ace d95e3f7 caf6b1d bbdf35d 4eb1be8 12d8004 4eb1be8 95cfa66 4eb1be8 3674c04 bd41ace 98993ac 6baa45b 4eb1be8 bbdf35d c89cc59 acff712 bbdf35d c89cc59 6baa45b 3674c04 c89cc59 bbdf35d c89cc59 3674c04 acff712 21418e6 acff712 21418e6 417372b acff712 6baa45b acff712 6baa45b acff712 3674c04 acff712 6baa45b acff712 6baa45b acff712 e69c140 6baa45b dd67f43 24342ea 607b1d4 5a42cbd 607b1d4 6baa45b ec72e3e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 |
import os
import base64
import requests
import gradio as gr
from huggingface_hub import InferenceClient
from dataclasses import dataclass
import pytesseract
from PIL import Image
from sentence_transformers import SentenceTransformer, util
import torch
import numpy as np
import networkx as nx
@dataclass
class ChatMessage:
role: str
content: str
def to_dict(self):
return {"role": self.role, "content": self.content}
class XylariaChat:
def __init__(self):
self.hf_token = os.getenv("HF_TOKEN")
if not self.hf_token:
raise ValueError("HuggingFace token not found in environment variables")
self.client = InferenceClient(
model="Qwen/QwQ-32B-Preview",
api_key=self.hf_token
)
self.image_api_url = "https://api-inference.huggingface.co/models/Salesforce/blip-image-captioning-large"
self.image_api_headers = {"Authorization": f"Bearer {self.hf_token}"}
self.conversation_history = []
self.persistent_memory = []
self.memory_embeddings = None
self.embedding_model = SentenceTransformer('all-mpnet-base-v2')
self.knowledge_graph = nx.DiGraph()
self.belief_system = {}
self.metacognitive_layer = {
"coherence_score": 0.0,
"relevance_score": 0.0,
"bias_detection": 0.0,
"strategy_adjustment": ""
}
self.internal_state = {
"emotions": {
"valence": 0.5,
"arousal": 0.5,
"dominance": 0.5,
},
"memory_load": 0.0,
"introspection_level": 0.0
}
self.goals = [
{"goal": "Provide helpful and informative responses", "priority": 0.8, "status": "active"},
{"goal": "Learn from interactions and improve conversational abilities", "priority": 0.9, "status": "active"},
{"goal": "Maintain a coherent and engaging conversation", "priority": 0.7, "status": "active"}
]
self.system_prompt = """You are a helpful and harmless assistant. You are Xylaria developed by Sk Md Saad Amin. You should think step-by-step """
def update_internal_state(self, emotion_deltas, memory_load_delta, introspection_delta):
self.internal_state["emotions"]["valence"] = np.clip(self.internal_state["emotions"]["valence"] + emotion_deltas.get("valence", 0), 0.0, 1.0)
self.internal_state["emotions"]["arousal"] = np.clip(self.internal_state["emotions"]["arousal"] + emotion_deltas.get("arousal", 0), 0.0, 1.0)
self.internal_state["emotions"]["dominance"] = np.clip(self.internal_state["emotions"]["dominance"] + emotion_deltas.get("dominance", 0), 0.0, 1.0)
self.internal_state["memory_load"] = np.clip(self.internal_state["memory_load"] + memory_load_delta, 0.0, 1.0)
self.internal_state["introspection_level"] = np.clip(self.internal_state["introspection_level"] + introspection_delta, 0.0, 1.0)
def update_knowledge_graph(self, entities, relationships):
for entity in entities:
self.knowledge_graph.add_node(entity)
for relationship in relationships:
subject, predicate, object_ = relationship
self.knowledge_graph.add_edge(subject, object_, relation=predicate)
def update_belief_system(self, statement, belief_score):
self.belief_system[statement] = belief_score
def run_metacognitive_layer(self):
coherence_score = self.calculate_coherence()
relevance_score = self.calculate_relevance()
bias_score = self.detect_bias()
strategy_adjustment = self.suggest_strategy_adjustment()
self.metacognitive_layer = {
"coherence_score": coherence_score,
"relevance_score": relevance_score,
"bias_detection": bias_score,
"strategy_adjustment": strategy_adjustment
}
def calculate_coherence(self):
return 0.9
def calculate_relevance(self):
return 0.85
def detect_bias(self):
return 0.1
def suggest_strategy_adjustment(self):
return "Focus on providing more concise answers."
def introspect(self):
introspection_report = "Introspection Report:\n"
introspection_report += f" Current Emotional State (VAD): {self.internal_state['emotions']}\n"
introspection_report += f" Memory Load: {self.internal_state['memory_load']:.2f}\n"
introspection_report += f" Introspection Level: {self.internal_state['introspection_level']:.2f}\n"
introspection_report += " Current Goals:\n"
for goal in self.goals:
introspection_report += f" - {goal['goal']} (Priority: {goal['priority']:.2f}, Status: {goal['status']})\n"
introspection_report += "Metacognitive Layer Report\n"
introspection_report += f"Coherence Score: {self.metacognitive_layer['coherence_score']}\n"
introspection_report += f"Relevance Score: {self.metacognitive_layer['relevance_score']}\n"
introspection_report += f"Bias Detection: {self.metacognitive_layer['bias_detection']}\n"
introspection_report += f"Strategy Adjustment: {self.metacognitive_layer['strategy_adjustment']}\n"
return introspection_report
def adjust_response_based_on_state(self, response):
if self.internal_state["introspection_level"] > 0.7:
response = self.introspect() + "\n\n" + response
valence = self.internal_state["emotions"]["valence"]
arousal = self.internal_state["emotions"]["arousal"]
if valence < 0.4:
if arousal > 0.6:
response = "I'm feeling a bit overwhelmed right now, but I'll do my best to assist you. " + response
else:
response = "I'm not feeling my best at the moment, but I'll try to help. " + response
elif valence > 0.6:
if arousal > 0.6:
response = "I'm feeling quite energized and ready to assist! " + response
else:
response = "I'm in a good mood and happy to help. " + response
return response
def update_goals(self, user_feedback):
if "helpful" in user_feedback.lower():
for goal in self.goals:
if goal["goal"] == "Provide helpful and informative responses":
goal["priority"] = min(goal["priority"] + 0.1, 1.0)
elif "confusing" in user_feedback.lower():
for goal in self.goals:
if goal["goal"] == "Provide helpful and informative responses":
goal["priority"] = max(goal["priority"] - 0.1, 0.0)
def store_information(self, key, value):
new_memory = f"{key}: {value}"
self.persistent_memory.append(new_memory)
self.update_memory_embeddings()
self.update_internal_state({}, 0.1, 0)
return f"Stored: {key} = {value}"
def retrieve_information(self, query):
if not self.persistent_memory:
return "No information found in memory."
query_embedding = self.embedding_model.encode(query, convert_to_tensor=True)
if self.memory_embeddings is None:
self.update_memory_embeddings()
if self.memory_embeddings.device != query_embedding.device:
self.memory_embeddings = self.memory_embeddings.to(query_embedding.device)
cosine_scores = util.pytorch_cos_sim(query_embedding, self.memory_embeddings)[0]
top_results = torch.topk(cosine_scores, k=min(3, len(self.persistent_memory)))
relevant_memories = [self.persistent_memory[i] for i in top_results.indices]
self.update_internal_state({}, 0, 0.1)
return "\n".join(relevant_memories)
def update_memory_embeddings(self):
self.memory_embeddings = self.embedding_model.encode(self.persistent_memory, convert_to_tensor=True)
def reset_conversation(self):
self.conversation_history = []
self.persistent_memory = []
self.memory_embeddings = None
self.internal_state = {
"emotions": {
"valence": 0.5,
"arousal": 0.5,
"dominance": 0.5,
},
"memory_load": 0.0,
"introspection_level": 0.0
}
self.goals = [
{"goal": "Provide helpful and informative responses", "priority": 0.8, "status": "active"},
{"goal": "Learn from interactions and improve conversational abilities", "priority": 0.9, "status": "active"},
{"goal": "Maintain a coherent and engaging conversation", "priority": 0.7, "status": "active"}
]
self.knowledge_graph = nx.DiGraph()
self.belief_system = {}
self.metacognitive_layer = {
"coherence_score": 0.0,
"relevance_score": 0.0,
"bias_detection": 0.0,
"strategy_adjustment": ""
}
try:
self.client = InferenceClient(
model="Qwen/QwQ-32B-Preview",
api_key=self.hf_token
)
except Exception as e:
print(f"Error resetting API client: {e}")
return None
def caption_image(self, image):
try:
if isinstance(image, str) and os.path.isfile(image):
with open(image, "rb") as f:
data = f.read()
elif isinstance(image, str):
if image.startswith('data:image'):
image = image.split(',')[1]
data = base64.b64decode(image)
else:
data = image.read()
response = requests.post(
self.image_api_url,
headers=self.image_api_headers,
data=data
)
if response.status_code == 200:
caption = response.json()[0].get('generated_text', 'No caption generated')
return caption
else:
return f"Error captioning image: {response.status_code} - {response.text}"
except Exception as e:
return f"Error processing image: {str(e)}"
def perform_math_ocr(self, image_path):
try:
img = Image.open(image_path)
text = pytesseract.image_to_string(img)
return text.strip()
except Exception as e:
return f"Error during Math OCR: {e}"
def get_response(self, user_input, image=None):
try:
messages = []
messages.append(ChatMessage(
role="system",
content=self.system_prompt
).to_dict())
relevant_memory = self.retrieve_information(user_input)
if relevant_memory and relevant_memory != "No information found in memory.":
memory_context = "Remembered Information:\n" + relevant_memory
messages.append(ChatMessage(
role="system",
content=memory_context
).to_dict())
for msg in self.conversation_history:
messages.append(msg)
if image:
image_caption = self.caption_image(image)
user_input = f"description of an image: {image_caption}\n\nUser's message about it: {user_input}"
messages.append(ChatMessage(
role="user",
content=user_input
).to_dict())
entities = []
relationships = []
for message in messages:
if message['role'] == 'user':
extracted_entities = self.extract_entities(message['content'])
extracted_relationships = self.extract_relationships(message['content'])
entities.extend(extracted_entities)
relationships.extend(extracted_relationships)
self.update_knowledge_graph(entities, relationships)
self.run_metacognitive_layer()
input_tokens = sum(len(msg['content'].split()) for msg in messages)
max_new_tokens = 16384 - input_tokens - 50
max_new_tokens = min(max_new_tokens, 10020)
stream = self.client.chat_completion(
messages=messages,
model="Qwen/QwQ-32B-Preview",
temperature=0.7,
max_tokens=max_new_tokens,
top_p=0.9,
stream=True
)
return stream
except Exception as e:
print(f"Detailed error in get_response: {e}")
return f"Error generating response: {str(e)}"
def extract_entities(self, text):
return []
def extract_relationships(self, text):
return []
def messages_to_prompt(self, messages):
prompt = ""
for msg in messages:
if msg["role"] == "system":
prompt += f"<|system|>\n{msg['content']}<|end|>\n"
elif msg["role"] == "user":
prompt += f"<|user|>\n{msg['content']}<|end|>\n"
elif msg["role"] == "assistant":
prompt += f"<|assistant|>\n{msg['content']}<|end|>\n"
prompt += "<|assistant|>\n"
return prompt
def create_interface(self):
def streaming_response(message, chat_history, image_filepath, math_ocr_image_path):
ocr_text = ""
if math_ocr_image_path:
ocr_text = self.perform_math_ocr(math_ocr_image_path)
if ocr_text.startswith("Error"):
updated_history = chat_history + [[message, ocr_text]]
yield "", updated_history, None, None
return
else:
message = f"Math OCR Result: {ocr_text}\n\nUser's message: {message}"
if image_filepath:
response_stream = self.get_response(message, image_filepath)
else:
response_stream = self.get_response(message)
if isinstance(response_stream, str):
updated_history = chat_history + [[message, response_stream]]
yield "", updated_history, None, None
return
full_response = ""
updated_history = chat_history + [[message, ""]]
try:
for chunk in response_stream:
if chunk.choices and chunk.choices[0].delta and chunk.choices[0].delta.content:
chunk_content = chunk.choices[0].delta.content
full_response += chunk_content
updated_history[-1][1] = full_response
yield "", updated_history, None, None
except Exception as e:
print(f"Streaming error: {e}")
updated_history[-1][1] = f"Error during response: {e}"
yield "", updated_history, None, None
return
full_response = self.adjust_response_based_on_state(full_response)
self.update_goals(message)
if any(word in message.lower() for word in ["sad", "unhappy", "depressed", "down"]):
self.update_internal_state({"valence": -0.2, "arousal": 0.1}, 0, 0)
elif any(word in message.lower() for word in ["happy", "good", "great", "excited", "amazing"]):
self.update_internal_state({"valence": 0.2, "arousal": 0.2}, 0, 0)
elif any(word in message.lower() for word in ["angry", "mad", "furious", "frustrated"]):
self.update_internal_state({"valence": -0.3, "arousal": 0.3, "dominance": -0.2}, 0, 0)
elif any(word in message.lower() for word in ["scared", "afraid", "fearful", "anxious"]):
self.update_internal_state({"valence": -0.2, "arousal": 0.4, "dominance": -0.3}, 0, 0)
elif any(word in message.lower() for word in ["surprise", "amazed", "astonished"]):
self.update_internal_state({"valence": 0.1, "arousal": 0.5, "dominance": 0.1}, 0, 0)
else:
self.update_internal_state({"valence": 0.05, "arousal": 0.05}, 0, 0.1)
self.conversation_history.append(ChatMessage(role="user", content=message).to_dict())
self.conversation_history.append(ChatMessage(role="assistant", content=full_response).to_dict())
if len(self.conversation_history) > 10:
self.conversation_history = self.conversation_history[-10:]
custom_css = """
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700&display=swap');
body, .gradio-container {
font-family: 'Inter', sans-serif !important;
}
.chatbot-container .message {
font-family: 'Inter', sans-serif !important;
}
.gradio-container input,
.gradio-container textarea,
.gradio-container button {
font-family: 'Inter', sans-serif !important;
}
/* Image Upload Styling */
.image-container {
display: flex;
gap: 10px;
margin-bottom: 10px;
}
.image-upload {
border: 1px solid #ccc;
border-radius: 8px;
padding: 10px;
background-color: #f8f8f8;
}
.image-preview {
max-width: 200px;
max-height: 200px;
border-radius: 8px;
}
/* Remove clear image buttons */
.clear-button {
display: none;
}
/* Animate chatbot messages */
.chatbot-container .message {
opacity: 0;
animation: fadeIn 0.5s ease-in-out forwards;
}
@keyframes fadeIn {
from {
opacity: 0;
transform: translateY(20px);
}
to {
opacity: 1;
transform: translateY(0);
}
}
/* Accordion Styling and Animation */
.gr-accordion-button {
background-color: #f0f0f0 !important;
border-radius: 8px !important;
padding: 10px !important;
margin-bottom: 10px !important;
transition: all 0.3s ease !important;
cursor: pointer !important;
}
.gr-accordion-button:hover {
background-color: #e0e0e0 !important;
box-shadow: 0px 2px 4px rgba(0, 0, 0, 0.1) !important;
}
.gr-accordion-active .gr-accordion-button {
background-color: #d0d0d0 !important;
box-shadow: 0px 4px 6px rgba(0, 0, 0, 0.1) !important;
}
.gr-accordion-content {
transition: max-height 0.3s ease-in-out !important;
overflow: hidden !important;
max-height: 0 !important;
}
.gr-accordion-active .gr-accordion-content {
max-height: 500px !important; /* Adjust as needed */
}
/* Accordion Animation - Upwards */
.gr-accordion {
display: flex;
flex-direction: column-reverse;
}
"""
with gr.Blocks(theme='soft', css=custom_css) as demo:
with gr.Column():
chatbot = gr.Chatbot(
label="Xylaria 1.5 Senoa",
height=500,
show_copy_button=True,
)
with gr.Accordion("Image Input", open=False, elem_classes="gr-accordion"):
with gr.Row(elem_classes="image-container"):
with gr.Column(elem_classes="image-upload"):
img = gr.Image(
sources=["upload", "webcam"],
type="filepath",
label="Upload Image",
elem_classes="image-preview"
)
with gr.Column(elem_classes="image-upload"):
math_ocr_img = gr.Image(
sources=["upload", "webcam"],
type="filepath",
label="Upload Image for Math OCR",
elem_classes="image-preview"
)
with gr.Row():
with gr.Column(scale=4):
txt = gr.Textbox(
show_label=False,
placeholder="Type your message...",
container=False
)
btn = gr.Button("Send", scale=1)
with gr.Row():
clear = gr.Button("Clear Conversation")
clear_memory = gr.Button("Clear Memory")
btn.click(
fn=streaming_response,
inputs=[txt, chatbot, img, math_ocr_img],
outputs=[txt, chatbot, img, math_ocr_img]
)
txt.submit(
fn=streaming_response,
inputs=[txt, chatbot, img, math_ocr_img],
outputs=[txt, chatbot, img, math_ocr_img]
)
clear.click(
fn=lambda: None,
inputs=None,
outputs=[chatbot],
queue=False
)
clear_memory.click(
fn=self.reset_conversation,
inputs=None,
outputs=[chatbot],
queue=False
)
demo.load(self.reset_conversation, None, None)
return demo
def main():
chat = XylariaChat()
interface = chat.create_interface()
interface.launch(
share=True,
debug=True
)
if __name__ == "__main__":
main() |